244,687 research outputs found

    Preservation of Semantic Properties during the Aggregation of Abstract Argumentation Frameworks

    Get PDF
    An abstract argumentation framework can be used to model the argumentative stance of an agent at a high level of abstraction, by indicating for every pair of arguments that is being considered in a debate whether the first attacks the second. When modelling a group of agents engaged in a debate, we may wish to aggregate their individual argumentation frameworks to obtain a single such framework that reflects the consensus of the group. Even when agents disagree on many details, there may well be high-level agreement on important semantic properties, such as the acceptability of a given argument. Using techniques from social choice theory, we analyse under what circumstances such semantic properties agreed upon by the individual agents can be preserved under aggregation.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    The neural representation of mental beliefs held by two agents

    Get PDF
    Neuroimaging research has demonstrated that mentalizing about false beliefs held by other people recruits the temporo-parietal junction (TPJ). However, earlier work was limited to a single agent that held a false belief. We investigated the effect of two agents that held similar or mixed false and/or true beliefs. Participants saw animated stories with two smurfs holding true or false beliefs (Story phase). At the end of each trial, they were requested to take the perspective of the self or one of the smurfs (Question phase). We predicted that an increasing number of smurfs holding a false belief would increase activation in the TPJ when participants have to report the belief of the smurf, because the incongruent belief should have a stronger influence if it is held by two compared with one agent. This prediction was confirmed as activation in the TPJ during the Story and Question phase increased when more smurfs held a false belief. Taking the perspective of the self led to stronger activation of the TPJ in the two conditions that involved a true belief and weakest activation in the condition of two false beliefs. These data suggest that activation in TPJ depends on the perspective participants take, and that the number of agents holding a false belief influences activation in the TPJ only when taking the agent's perspective

    A knowledge representation meta-model for rule-based modelling of signalling networks

    Full text link
    The study of cellular signalling pathways and their deregulation in disease states, such as cancer, is a large and extremely complex task. Indeed, these systems involve many parts and processes but are studied piecewise and their literatures and data are consequently fragmented, distributed and sometimes--at least apparently--inconsistent. This makes it extremely difficult to build significant explanatory models with the result that effects in these systems that are brought about by many interacting factors are poorly understood. The rule-based approach to modelling has shown some promise for the representation of the highly combinatorial systems typically found in signalling where many of the proteins are composed of multiple binding domains, capable of simultaneous interactions, and/or peptide motifs controlled by post-translational modifications. However, the rule-based approach requires highly detailed information about the precise conditions for each and every interaction which is rarely available from any one single source. Rather, these conditions must be painstakingly inferred and curated, by hand, from information contained in many papers--each of which contains only part of the story. In this paper, we introduce a graph-based meta-model, attuned to the representation of cellular signalling networks, which aims to ease this massive cognitive burden on the rule-based curation process. This meta-model is a generalization of that used by Kappa and BNGL which allows for the flexible representation of knowledge at various levels of granularity. In particular, it allows us to deal with information which has either too little, or too much, detail with respect to the strict rule-based meta-model. Our approach provides a basis for the gradual aggregation of fragmented biological knowledge extracted from the literature into an instance of the meta-model from which we can define an automated translation into executable Kappa programs.Comment: In Proceedings DCM 2015, arXiv:1603.0053

    Arguing Using Opponent Models

    Get PDF
    Peer reviewedPostprin

    Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

    Get PDF
    Many real-world applications can be described as large-scale games of imperfect information. To deal with these challenging domains, prior work has focused on computing Nash equilibria in a handcrafted abstraction of the domain. In this paper we introduce the first scalable end-to-end approach to learning approximate Nash equilibria without prior domain knowledge. Our method combines fictitious self-play with deep reinforcement learning. When applied to Leduc poker, Neural Fictitious Self-Play (NFSP) approached a Nash equilibrium, whereas common reinforcement learning methods diverged. In Limit Texas Holdem, a poker game of real-world scale, NFSP learnt a strategy that approached the performance of state-of-the-art, superhuman algorithms based on significant domain expertise.Comment: updated version, incorporating conference feedbac

    Resilience of multi-robot systems to physical masquerade attacks

    Full text link
    The advent of autonomous mobile multi-robot systems has driven innovation in both the industrial and defense sectors. The integration of such systems in safety-and security-critical applications has raised concern over their resilience to attack. In this work, we investigate the security problem of a stealthy adversary masquerading as a properly functioning agent. We show that conventional multi-agent pathfinding solutions are vulnerable to these physical masquerade attacks. Furthermore, we provide a constraint-based formulation of multi-agent pathfinding that yields multi-agent plans that are provably resilient to physical masquerade attacks. This formalization leverages inter-agent observations to facilitate introspective monitoring to guarantee resilience.Accepted manuscrip

    Statistics of opinion domains of the majority-vote model on a square lattice

    Full text link
    The existence of juxtaposed regions of distinct cultures in spite of the fact that people's beliefs have a tendency to become more similar to each other's as the individuals interact repeatedly is a puzzling phenomenon in the social sciences. Here we study an extreme version of the frequency-dependent bias model of social influence in which an individual adopts the opinion shared by the majority of the members of its extended neighborhood, which includes the individual itself. This is a variant of the majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors' opinions. We assume that the individuals are fixed in the sites of a square lattice of linear size LL and that they interact with their nearest neighbors only. Within a mean-field framework, we derive the equations of motion for the density of individuals adopting a particular opinion in the single-site and pair approximations. Although the single-site approximation predicts a single opinion domain that takes over the entire lattice, the pair approximation yields a qualitatively correct picture with the coexistence of different opinion domains and a strong dependence on the initial conditions. Extensive Monte Carlo simulations indicate the existence of a rich distribution of opinion domains or clusters, the number of which grows with L2L^2 whereas the size of the largest cluster grows with lnL2\ln L^2. The analysis of the sizes of the opinion domains shows that they obey a power-law distribution for not too large sizes but that they are exponentially distributed in the limit of very large clusters. In addition, similarly to other well-known social influence model -- Axelrod's model -- we found that these opinion domains are unstable to the effect of a thermal-like noise

    Computational Evidence that Self-regulation of Creativity is Good for Society

    Full text link
    Excess individual creativity can be detrimental to society because creators invest in unproven ideas at the expense of propagating proven ones. Moreover, a proportion of individuals can benefit from creativity without being creative themselves by copying creators. We hypothesized that (1) societies increase their rate of cultural evolution by tempering the novelty-generating effects of creativity with the novelty-preserving effects of imitation, and (2) this is carried out by selectively rewarding and punishing creativity according to the value of the individuals' creative outputs. We tested this using an agent-based model of cultural evolution in which each agent self-regulated its invention-to-imitation ratio as a function of the fitness of its cultural outputs. In self-regulating societies, agents segregated into creators and imitators. The mean fitness of cultural outputs was higher than in non-self-regulating societies, and changes in diversity were rapider and more pronounced. We discuss limitations and possible social implications of our findings.Comment: 6 pages. arXiv admin note: substantial text overlap with arXiv:1310.475

    Modelling Adaptation through Social Allostasis: Modulating the Effects of Social Touch with Oxytocin in Embodied Agents

    Get PDF
    Social allostasis is a mechanism of adaptation that permits individuals to dynamically adapt their physiology to changing physical and social conditions. Oxytocin (OT) is widely considered to be one of the hormones that drives and adapts social behaviours. While its precise effects remain unclear, two areas where OT may promote adaptation are by affecting social salience, and affecting internal responses of performing social behaviours. Working towards a model of dynamic adaptation through social allostasis in simulated embodied agents, and extending our previous work studying OT-inspired modulation of social salience, we present a model and experiments that investigate the effects and adaptive value of allostatic processes based on hormonal (OT) modulation of affective elements of a social behaviour. In particular, we investigate and test the effects and adaptive value of modulating the degree of satisfaction of tactile contact in a social motivation context in a small simulated agent society across different environmental challenges (related to availability of food) and effects of OT modulation of social salience as a motivational incentive. Our results show that the effects of these modulatory mechanisms have different (positive or negative) adaptive value across different groups and under different environmental circumstance in a way that supports the context-dependent nature of OT, put forward by the interactionist approach to OT modulation in biological agents. In terms of simulation models, this means that OT modulation of the mechanisms that we have described should be context-dependent in order to maximise viability of our socially adaptive agents, illustrating the relevance of social allostasis mechanisms.Peer reviewedFinal Published versio
    corecore