337 research outputs found

    Deriving safety cases for hierarchical structure in model-based development

    No full text
    Model-based development and automated code generation are increasingly used for actual production code, in particular in mathematical and engineering domains. However, since code generators are typically not qualified, there is no guarantee that their output satisfies the system requirements, or is even safe. Here we present an approach to systematically derive safety cases that argue along the hierarchical structure in model-based development. The safety cases are constructed mechanically using a formal analysis, based on automated theorem proving, of the automatically generated code. The analysis recovers the model structure and component hierarchy from the code, providing independent assurance of both code and model. It identifies how the given system safety requirements are broken down into component requirements, and where they are ultimately established, thus establishing a hierarchy of requirements that is aligned with the hierarchical model structure. The derived safety cases reflect the results of the analysis, and provide a high-level argument that traces the requirements on the model via the inferred model structure to the code. We illustrate our approach on flight code generated from hierarchical Simulink models by Real-Time Worksho

    Modeling Guidelines for Code Generation in the Railway Signaling Context

    Get PDF
    Modeling guidelines constitute one of the fundamental cornerstones for Model Based Development. Their relevance is essential when dealing with code generation in the safety-critical domain. This article presents the experience of a railway signaling systems manufacturer on this issue. Introduction of Model-Based Development (MBD) and code generation in the industrial safety-critical sector created a crucial paradigm shift in the development process of dependable systems. While traditional software development focuses on the code, with MBD practices the focus shifts to model abstractions. The change has fundamental implications for safety-critical systems, which still need to guarantee a high degree of confidence also at code level. Usage of the Simulink/Stateflow platform for modeling, which is a de facto standard in control software development, does not ensure by itself production of high-quality dependable code. This issue has been addressed by companies through the definition of modeling rules imposing restrictions on the usage of design tools components, in order to enable production of qualified code. The MAAB Control Algorithm Modeling Guidelines (MathWorks Automotive Advisory Board)[3] is a well established set of publicly available rules for modeling with Simulink/Stateflow. This set of recommendations has been developed by a group of OEMs and suppliers of the automotive sector with the objective of enforcing and easing the usage of the MathWorks tools within the automotive industry. The guidelines have been published in 2001 and afterwords revisited in 2007 in order to integrate some additional rules developed by the Japanese division of MAAB [5]. The scope of the current edition of the guidelines ranges from model maintainability and readability to code generation issues. The rules are conceived as a reference baseline and therefore they need to be tailored to comply with the characteristics of each industrial context. Customization of these recommendations has been performed for the automotive control systems domain in order to enforce code generation [7]. The MAAB guidelines have been found profitable also in the aerospace/avionics sector [1] and they have been adopted by the MathWorks Aerospace Leadership Council (MALC). General Electric Transportation Systems (GETS) is a well known railway signaling systems manufacturer leading in Automatic Train Protection (ATP) systems technology. Inside an effort of adopting formal methods within its own development process, GETS decided to introduce system modeling by means of the MathWorks tools [2], and in 2008 chose to move to code generation. This article reports the experience performed by GETS in developing its own modeling standard through customizing the MAAB rules for the railway signaling domain and shows the result of this experience with a successful product development story

    Model Driven Development and Analysis for Embedded Automotive Software

    Get PDF
    Mudelipõhine arendamine ja analüüs on autotööstuses kasutatav uus meetod. Seda rakendatakse mootorsõidukite tootjate poolt, kuna hajusale komponentide arendusele sobib olemuslikult spetsifitseerimine musta-kasti printsiibil. Muud põhjused tulenevad survest toota kvaliteetset tarkvara, mis vastab kõigile regulatiivsetele standarditele, kuid mis sobib autotööstuse tootjate hinnamudeliga. Mudeli kasutamisel saab komponentide kehtivuse ja standardse vastavuse kontrollida enne, kui tegelik tarkvara on autosse paigaldatud.Mudeli kasutamine tekitab ka väljakutseid, et toota lõpuks tarkvara, mis kajastab täpselt mudeli toimimist. Mudelist automaatselt genereeritud tarkvara loetakse vastuseks, kuna see on stabiilne ja pärit juba kontrollitud mudelist. Kuna tarkvara muutub autotööstuses üha olulisemaks, muutuvad tarkvara loomise mudel ja genereerimise protsess üha keerulisemaks.Käesolev töö uurib mudelipõhist autotööstuse tarkvara arendamise ja analüüsimise protsessi - teisendades MATLAB/Simulink mudel AUTOSAR mudeliks. Lõputöö raames loodud programmid teostavad analüüsi erinevate teisendussammude tarbeks. Protsessi analüüsides selgus, et teisenduse meetoodika mõjutab oluliselt mudeli esitust ning ka lõpptulemuseks saadud AUTOSAR mudeli struktuuri. Näeme erinevaid võimalikke alternatiive sellele, kuidas mudelit saab vaadata ja muuta AUTOSAR-failiks. Selles lõputöös vaadeldud iteratiivne protsess pole lõplik ja seda saab veel täiustada.Model-driven development and analysis is the state of the art method in the automotive industry. One of the reasons for its heavy utilization is coming from the black box nature of the components developed by the automotive vehicle manufacturers. The other reasons are coming from the pressure to produce quality software that complies with all regulatory standards but can fit the pricing model of automotive vehicle manufacturers.Validity and standard compliance of the components can be verified using models before the actual piece of software is deployed into an automotive vehicle. The utilization of the model also creates challenges: how to produce final software that precisely reflects how the model works. An automatically generated software from a model is deemed as an answer since it is coming from the already verified model and also will inherently retain consistency with the model. As software gets more and more critical inside an automotive vehicle, a model to create the software is getting more and more complicated and along with the automated software generation process.This thesis examines the model-driven development and analysis process for automotive software by conducting model conversion from MATLAB/Simulink model into AUTOSAR. The application developed for this thesis provides analysis and insights for every step of the conversion process. From the insights gathered along the process, it shows that the different model and transformation method creates a different model representation that affects the final structure of the AUTOSAR result. In the end, there are several possible alternatives on the way a model can be seen and transformed into an AUTOSAR file. It is also concluded that the iterative process in this project is not final and can be further improved

    An investigation of model-based techniques for automotive electronic system development

    Get PDF
    Over the past decades, the adoption of electronic systems for the manufacturing of automotive vehicles has been exponentially popularized. This growth has been driven by the premium automobile sector where, presently, diverse electronic systems are used. These electronic systems include systems that control the engine, transmission, suspension and handling of a vehicle; air bag and other advanced restraint systems; comfort systems; security systems; entertainment and information (infotainment) systems. In systems terms, automotive embedded electronic systems can now be classified as a System of Systems (SoS). Automotive systems engineering requires a sustainable integration of new methods, development processes, and tools that are specifically adapted to the automotive domain. Model-based design is one potential methodology to carry out design, implement and manage such complex distributed systems, and their integration into one cohesive and reliable SoS to meet the challenges for the automotive industry. This research was conducted to investigate the model-based design of a 4×4 Information System, within an automotive electronic SoS. Two distinct model-based approaches to the development of an automotive electronic system are discussed in this study. The first approach involves the use of the Systems Modelling Language (SysML) based tool ARTiSAN Studio for structural modelling, functional modelling and code generation. The second approach involves the use of the MATLAB based tools Simulink and Stateflow for functional modelling, and code generation. The results show that building the model in SysML by using ARTiSAN Studio provides a clearly structured visualization of the 4×4 Information System from both structural and behavioural viewpoints of the system with relevant objects. SysML model facilitates a more comprehensive understanding of the system than the model built in Simulink/Stateflow. The Simulink/Stateflow model demonstrates its superior performance in producing high quality and better efficiency of C code for the automotive software delivery compared with the model built in ARTiSAN Studio. Furthermore, this Thesis also gets insight into an advanced function development approach based on the real-time simulation and animation for the 4×4 Information System. Finally, the Thesis draws conclusions about how to make use of model-based design for the development of an automotive electronic SoS

    Real-time high-performance computing for embedded control systems

    Get PDF
    The real-time control systems industry is moving towards the consolidation of multiple computing systems into fewer and more powerful ones, aiming for a reduction in size, weight, and power. The increasing demand for higher performance in other critical domains like autonomous driving has led the industry to recently include embedded GPUs for the implementation of advanced functionalities. The highly parallel architecture of GPUs could also be leveraged in the control systems industry to develop more advanced, energy-efficient, and scalable control systems. However, the closed-source and non-deterministic nature of GPUs complicates the resource provisioning analysis required for the implementation of critical real-time systems. On the other hand, there is no indication of the integration of GPUs in the traditional development cycle of control systems, which is oriented to the use of a model-based design approach. Recently, some model-based design tools vendors have extended their development frameworks with GPU code generation capabilities targeting hybrid computing platforms, so that the model-based design environment now enables the concurrent analysis of more complex and diverse functions by simulation and automating the deployment to the final target. However, there is no indication whether these tools are well-suited for the design and development of time-sensitive systems. Motivated by these challenges, in this thesis, we contribute to the state of the art of real-time control systems towards the adoption of embedded GPUs by providing tools to facilitate the resource provisioning analysis and the integration in the model-based design development cycle. First, we present a methodology and an automated tool to extract the properties of GPU memory allocators. This tool allows the computation of the real amount of memory used by GPU applications, facilitating a correct resource provisioning analysis. Then, we present a library which allows the characterization of the use of dynamic memory in GPU applications. We use this library to characterize GPU benchmarks and we identify memory allocation patterns that could be modified to improve performance and memory consumption when targeting embedded GPUs. Based on these results, we present a tool to optimize the use of dynamic memory in legacy GPU applications executed on embedded platforms. This tool allows us to minimize the memory consumption and memory management overhead of GPU applications without rewriting them. Afterwards, we analyze the timing of control algorithms executed in embedded GPUs and we identify techniques to achieve an acceptable real-time behavior. Finally, we evaluate model-based design tools in terms of integration with GPU hardware and GPU code generation, and we propose improvements for the model-based generated GPU code. Then, we present a source-to-source transformation tool to automatically apply the proposed improvements.La industria de los sistemas de control en tiempo real avanza hacia la consolidación de múltiples sistemas informáticos en menos y más potentes sistemas, con el objetivo de reducir el tamaño, el peso y el consumo. La creciente demanda de un mayor rendimiento en otros dominios críticos, como la conducción autónoma, ha llevado a la industria a incluir recientemente GPU embebidas para la implementación de funcionalidades avanzadas. La arquitectura altamente paralela de las GPU también podría aprovecharse en la industria de los sistemas de control para desarrollar sistemas de control más avanzados, eficientes energéticamente y escalables. Sin embargo, la naturaleza privativa y no determinista de las GPUs complica el análisis de aprovisionamiento de recursos requerido para la implementación de sistemas críticos en tiempo real. Por otro lado, no hay indicios de la integración de las GPU en el ciclo de desarrollo tradicional de los sistemas de control, que está orientado al uso de un enfoque de diseño basado en modelos. Recientemente, algunos proveedores de herramientas de diseño basado en modelos han ampliado sus entornos de desarrollo con capacidades de generación de código de GPU dirigidas a plataformas informáticas híbridas, de modo que el entorno de diseño basado en modelos ahora permite el análisis simultáneo de funciones más complejas y diversas mediante la simulación y la automatización de la implementación para el objetivo final. Sin embargo, no hay indicación de si estas herramientas son adecuadas para el diseño y desarrollo de sistemas sensibles al tiempo. Motivados por estos desafíos, en esta tesis contribuimos al estado del arte de los sistemas de control en tiempo real hacia la adopción de GPUs integradas al proporcionar herramientas para facilitar el análisis de aprovisionamiento de recursos y la integración en el ciclo de desarrollo de diseño basado en modelos. Primero, presentamos una metodología y una herramienta automatizada para extraer las propiedades de los asignadores de memoria en GPUs. Esta herramienta permite el cómputo de la cantidad real de memoria utilizada por las aplicaciones GPU, facilitando un correcto análisis del aprovisionamiento de recursos. Luego, presentamos una librería que permite la caracterización del uso de memoria dinámica en aplicaciones de GPU. Usamos esta librería para caracterizar una serie de benchmarks GPU e identificamos patrones de asignación de memoria que podrían modificarse para mejorar el rendimiento y el consumo de memoria al utilizar GPUs embebidas. Con base en estos resultados, presentamos también una herramienta para optimizar el uso de la memoria dinámica en aplicaciones de GPU heredadas al ser ejecutadas en plataformas embebidas. Esta herramienta nos permite minimizar el consumo de memoria y la sobrecarga de administración de memoria de las aplicaciones GPU sin necesidad de reescribirlas. Posteriormente, analizamos el tiempo de los algoritmos de control ejecutados en GPUs embebidas e identificamos técnicas para lograr un comportamiento de tiempo real aceptable. Finalmente, evaluamos las herramientas de diseño basadas en modelos en términos de integración con hardware GPU y generación de código GPU, y proponemos mejoras para el código GPU generado por las herramientas basadas en modelos. Luego, presentamos una herramienta de transformación de código fuente para aplicar automáticamente al código generado las mejoras propuestas.Postprint (published version

    SimSched: A tool for Simulating Autosar Implementaion in Simulink

    Full text link
    AUTOSAR (AUTomotive Open System ARchitecture) is an open industry standard for the automotive sector. It defines the three-layered automotive software architecture. One of these layers is the application layer, where functional behaviors are encapsulated in Software Components (SW-Cs). Inside SW-Cs, a set of runnable entities represents the internal behavior and is realized as a set of tasks. To address AUTOSAR's lack of support for modeling behaviors of runnables, languages such as Simulink are employed. Simulink simulations assume Simulink block behaviors are completed in zero execution time, while real execution requires a finite execution time. This timing mismatch can result in failures to detect unexpected runtime behaviors during the simulation phase. This paper extends the Simulink environment to model the timing properties of tasks. We present a Simulink block that can schedule tasks with non-zero simulation times. It enables a more realistic analysis during model development.Comment: 21 page

    Re-use of tests and arguments for assesing dependable mixed-critically systems

    Get PDF
    The safety assessment of mixed-criticality systems (MCS) is a challenging activity due to system heterogeneity, design constraints and increasing complexity. The foundation for MCSs is the integrated architecture paradigm, where a compact hardware comprises multiple execution platforms and communication interfaces to implement concurrent functions with different safety requirements. Besides a computing platform providing adequate isolation and fault tolerance mechanism, the development of an MCS application shall also comply with the guidelines defined by the safety standards. A way to lower the overall MCS certification cost is to adopt a platform-based design (PBD) development approach. PBD is a model-based development (MBD) approach, where separate models of logic, hardware and deployment support the analysis of the resulting system properties and behaviour. The PBD development of MCSs benefits from a composition of modular safety properties (e.g. modular safety cases), which support the derivation of mixed-criticality product lines. The validation and verification (V&V) activities claim a substantial effort during the development of programmable electronics for safety-critical applications. As for the MCS dependability assessment, the purpose of the V&V is to provide evidences supporting the safety claims. The model-based development of MCSs adds more V&V tasks, because additional analysis (e.g., simulations) need to be carried out during the design phase. During the MCS integration phase, typically hardware-in-the-loop (HiL) plant simulators support the V&V campaigns, where test automation and fault-injection are the key to test repeatability and thorough exercise of the safety mechanisms. This dissertation proposes several V&V artefacts re-use strategies to perform an early verification at system level for a distributed MCS, artefacts that later would be reused up to the final stages in the development process: a test code re-use to verify the fault-tolerance mechanisms on a functional model of the system combined with a non-intrusive software fault-injection, a model to X-in-the-loop (XiL) and code-to-XiL re-use to provide models of the plant and distributed embedded nodes suited to the HiL simulator, and finally, an argumentation framework to support the automated composition and staged completion of modular safety-cases for dependability assessment, in the context of the platform-based development of mixed-criticality systems relying on the DREAMS harmonized platform.La dificultad para evaluar la seguridad de los sistemas de criticidad mixta (SCM) aumenta con la heterogeneidad del sistema, las restricciones de diseño y una complejidad creciente. Los SCM adoptan el paradigma de arquitectura integrada, donde un hardware embebido compacto comprende múltiples plataformas de ejecución e interfaces de comunicación para implementar funciones concurrentes y con diferentes requisitos de seguridad. Además de una plataforma de computación que provea un aislamiento y mecanismos de tolerancia a fallos adecuados, el desarrollo de una aplicación SCM además debe cumplir con las directrices definidas por las normas de seguridad. Una forma de reducir el coste global de la certificación de un SCM es adoptar un enfoque de desarrollo basado en plataforma (DBP). DBP es un enfoque de desarrollo basado en modelos (DBM), en el que modelos separados de lógica, hardware y despliegue soportan el análisis de las propiedades y el comportamiento emergente del sistema diseñado. El desarrollo DBP de SCMs se beneficia de una composición modular de propiedades de seguridad (por ejemplo, casos de seguridad modulares), que facilitan la definición de líneas de productos de criticidad mixta. Las actividades de verificación y validación (V&V) representan un esfuerzo sustancial durante el desarrollo de aplicaciones basadas en electrónica confiable. En la evaluación de la seguridad de un SCM el propósito de las actividades de V&V es obtener las evidencias que apoyen las aseveraciones de seguridad. El desarrollo basado en modelos de un SCM incrementa las tareas de V&V, porque permite realizar análisis adicionales (por ejemplo, simulaciones) durante la fase de diseño. En las campañas de pruebas de integración de un SCM habitualmente se emplean simuladores de planta hardware-in-the-loop (HiL), en donde la automatización de pruebas y la inyección de faltas son la clave para la repetitividad de las pruebas y para ejercitar completamente los mecanismos de tolerancia a fallos. Esta tesis propone diversas estrategias de reutilización de artefactos de V&V para la verificación temprana de un MCS distribuido, artefactos que se emplearán en ulteriores fases del desarrollo: la reutilización de código de prueba para verificar los mecanismos de tolerancia a fallos sobre un modelo funcional del sistema combinado con una inyección de fallos de software no intrusiva, la reutilización de modelo a X-in-the-loop (XiL) y código a XiL para obtener modelos de planta y nodos distribuidos aptos para el simulador HiL y, finalmente, un marco de argumentación para la composición automatizada y la compleción escalonada de casos de seguridad modulares, en el contexto del desarrollo basado en plataformas de sistemas de criticidad mixta empleando la plataforma armonizada DREAMS.Kritikotasun nahastuko sistemen segurtasun ebaluazioa jarduera neketsua da beraien heterogeneotasuna dela eta. Sistema hauen oinarria arkitektura integratuen paradigman datza, non hardware konpaktu batek exekuzio plataforma eta komunikazio interfaze ugari integratu ahal dituen segurtasun baldintza desberdineko funtzio konkurrenteak inplementatzeko. Konputazio plataformek isolamendu eta akatsen aurkako mekanismo egokiak emateaz gain, segurtasun arauek definituriko jarraibideak jarraitu behar dituzte kritikotasun mistodun aplikazioen garapenean. Sistema hauen zertifikazio prozesuaren kostua murrizteko aukera bat plataformetan oinarritutako garapenean (PBD) datza. Garapen planteamendu hau modeloetan oinarrituriko garapena da (MBD) non modeloaren logika, hardware eta garapen desberdinak sistemaren propietateen eta portaeraren aurka aztertzen diren. Kritikotasun mistodun sistemen PBD garapenak etekina ateratzen dio moduluetan oinarrituriko segurtasun propietateei, adibidez: segurtasun kasu modularrak (MSC). Modulu hauek kritikotasun mistodun produktu-lerroak ere hartzen dituzte kontutan. Berifikazio eta balioztatze (V&V) jarduerek esfortzu kontsideragarria eskatzen dute segurtasun-kiritikoetarako elektronika programagarrien garapenean. Kritikotasun mistodun sistemen konfiantzaren ebaluazioaren eta V&V jardueren helburua segurtasun eskariak jasotzen dituzten frogak proportzionatzea da. Kritikotasun mistodun sistemen modelo bidezko garapenek zeregin gehigarriak atxikitzen dizkio V&V jarduerari, fase honetan analisi gehigarriak (hots, simulazioak) zehazten direlako. Bestalde, kritikotasun mistodun sistemen integrazio fasean, hardware-in-the-loop (Hil) simulazio plantek V&V iniziatibak sostengatzen dituzte non testen automatizazioan eta akatsen txertaketan funtsezko jarduerak diren. Jarduera hauek frogen errepikapena eta segurtasun mekanismoak egiaztzea ahalbidetzen dute. Tesi honek V&V artefaktuen berrerabilpenerako estrategiak proposatzen ditu, kritikotasun mistodun sistemen egiaztatze azkarrerako sistema mailan eta garapen prozesuko azken faseetaraino erabili daitezkeenak. Esate baterako, test kodearen berrabilpena akats aurkako mekanismoak egiaztatzeko, modelotik X-in-the-loop (XiL)-ra eta kodetik XiL-rako konbertsioa HiL simulaziorako eta argumentazio egitura bat DREAMS Europear proiektuan definituriko arkitektura estiloan oinarrituriko segurtasun kasu modularrak automatikoki eta gradualki sortzeko
    corecore