282 research outputs found

    Re-engineering the outpatient process flow of a multi-speciality hospital

    Get PDF
    Manufacturing concepts such as Just-in-Time, Lean and Six-Sigma, Japanese 5S, Materials Requirement Planning, Scheduling and Capacity Management have been applied in the Healthcare industries in the West for the last decade and has yielded positive results. In this study, these concepts and philosophies have been applied to an Indian Multi-speciality Hospital to improve its OPD process flow and increase patient satisfaction. The Outpatients Department (OPD) is usually the most crowded sector in a hospital. The frequent problems encountered include the waiting period for consultation, an unpredictable number of Walk-in patients, insufficient and operationally deficient OPD reception staff and unattended appointment patients. This study aims at, identifying methods to standardise OPD operations management. It has made the process more efficient through optimum resource utilisation. This will increase patient satisfaction by meeting and exceeding their expectations while maintaining quality of care. This research was conducted by mapping the process flow and using the data that was collected through an observational, cross-sectional, non-interventional study. Though there were a comprehensive set of recommendations at the end of the study, only a few could be implemented due to the introduction of a new Hospital Information System (HIS) software putting the implementation plan on hold

    Novel approaches to radiotherapy treatment scheduling

    Get PDF
    Radiotherapy represents an important phase of treatment for a large number of cancer patients. It is essential that resources used to deliver this treatment are used efficiently. This thesis approaches the problem of scheduling treatments in a radiotherapy centre. Data about the daily intake of patients are collected and analysed. Several approaches are presented to create a schedule every day. The first presented are constructive approaches, developed due to their simplicity and low computational requirements. The approaches vary the preferred treatment start, machine utilisation reservation levels, and the frequency and number of days in advance with which schedules are created. An Integer Linear Programming (ILP) model is also presented for the problem and used in combination with approaches similar to the ones above. A generalisation of the constructive utilisation threshold approach is developed in order to vary the threshold level for each day according to how far it is from the current day. In addition, the model is evaluated for different sizes of the problem by increasing the rate of patient arrivals per day and the number of machines available. Different machine allocation policies are also evaluated. An exact method is introduced for finding a set of solutions representing the whole Pareto frontier for integer programming problems. It is combined with two robust approaches: the first considers known patients before they are ready to be scheduled, while the second considers sets of predicted patients who might arrive in the near future. A rescheduling approach is also suggested and implemented. A comparison is made amongst the best results from each group of approaches to identify the advantages and disadvantages of each. The robust approaches are found to be the best alternative of the set

    Stochastic dynamic nursing service budgeting

    Get PDF

    Optimization of Healthcare Delivery System under Uncertainty: Schedule Elective Surgery in an Ambulatory Surgical Center and Schedule Appointment in an Outpatient Clinic

    Get PDF
    This work investigates two types of scheduling problems in the healthcare industry. One is the elective surgery scheduling problem in an ambulatory center, and the other is the appointment scheduling problem in an outpatient clinic. The ambulatory surgical center is usually equipped with an intake area, several operating rooms (ORs), and a recovery area. The set of surgeries to be scheduled are known in advance. Besides the surgery itself, the sequence-dependent setup time and the surgery recovery are also considered when making the scheduling decision. The scheduling decisions depend on the availability of the ORs, surgeons, and the recovery beds. The objective is to minimize the total cost by making decision in three aspects, number of ORs to open, surgery assignment to ORs, and surgery sequence in each OR. The problem is solved in two steps. In the first step, we propose a constraint programming model and a mixed integer programming model to solve a deterministic version of the problem. In the second step, we consider the variability of the surgery and recovery durations when making scheduling decisions and build a two stage stochastic programming model and solve it by an L-shaped algorithm. The stochastic nature of the outpatient clinic appointment scheduling system, caused by demands, patient arrivals, and service duration, makes it difficult to develop an optimal schedule policy. Once an appointment request is received, decision makers determine whether to accept the appointment and put it into a slot or reject it. Patients may cancel their scheduled appointment or simply not show up. The no-show and cancellation probability of the patients are modeled as the functions of the indirect waiting time of the patients. The performance measure is to maximize the expected net rewards, i.e., the revenue of seeing patients minus the cost of patients\u27 indirect and direct waiting as well as the physician\u27s overtime. We build a Markov Decision Process model and proposed a backward induction algorithm to obtain the optimal policy. The optimal policy is tested on random instances and compared with other heuristic policies. The backward induction algorithm and the heuristic methods are programmed in Matlab
    • …
    corecore