34,292 research outputs found

    Engaging Undergraduate Students in Transportation Studies through Simulating Transportation for Realistic Engineering Education and Training (STREET)

    Get PDF
    The practice of transportation engineering and planning has evolved substantially over the past several decades. A new paradigm for transportation engineering education is required to better engage students and deliver knowledge. Simulation tools have been used by transportation professionals to evaluate and analyze the potential impact of design or control strategy changes. Conveying complex transportation concepts can be effectively achieved by exploring them through simulation. Simulation is particularly valuable in transportation education because most transportation policies and strategies in the real world take years to implement with a prohibitively high cost. Transportation simulation allows learners to apply different control strategies in a risk-free environment and to expose themselves to transportation engineering methodologies that are currently in practice. Despite the advantages, simulation, however, has not been widely adopted in the education of transportation engineering. Using simulation in undergraduate transportation courses is sporadic and reported efforts have been focused on the upper-level technical elective courses. A suite of web-based simulation modules was developed and incorporated in the undergraduate transportation courses at University of Minnesota. The STREET (Simulating Transportation for Realistic Engineering Education and Training) research project was recently awarded by NSF (National Science Foundation) to develop web-based simulation modules to improve instruction in transportation engineering courses and evaluate their effectiveness. Our ultimate goal is to become the epicenter for developing simulation-based teaching materials, an active textbook, which offers an interactive learning environment to undergraduate students. With the hand-on nature of simulation, we hope to improve student understanding of critical concepts in transportation engineering and student motivation toward transportation engineering, and improve student retention in the field. We also would like to disseminate the results and teaching materials to other colleges to integrate the simulation modules in their curricula.Transportation Education and Training, Transportation Simulation, Roadway Geometry Design

    Business Process Management Education in Academia: Status, challenges, and Recommendations

    Get PDF
    In response to the growing proliferation of Business Process Management (BPM) in industry and the demand this creates for BPM expertise, universities across the globe are at various stages of incorporating knowledge and skills in their teaching offerings. However, there are still only a handful of institutions that offer specialized education in BPM in a systematic and in-depth manner. This article is based on a global educators’ panel discussion held at the 2009 European Conference on Information Systems in Verona, Italy. The article presents the BPM programs of five universities from Australia, Europe, Africa, and North America, describing the BPM content covered, program and course structures, and challenges and lessons learned. The article also provides a comparative content analysis of BPM education programs illustrating a heterogeneous view of BPM. The examples presented demonstrate how different courses and programs can be developed to meet the educational goals of a university department, program, or school. This article contributes insights on how best to continuously sustain and reshape BPM education to ensure it remains dynamic, responsive, and sustainable in light of the evolving and ever-changing marketplace demands for BPM expertise

    Teaching complex theoretical multi-step problems in ICT networking through 3D printing and augmented reality

    Get PDF
    This paper presents a pilot study rationale and research methodology using a mixed media visualisation (3D printing and Augmented Reality simulation) learning intervention to help students in an ICT degree represent theoretical complex multi-step problems without a corresponding real world physical analog model. This is important because these concepts are difficult to visualise without a corresponding mental model. The proposed intervention uses an augmented reality application programmed with free commercially available tools, tested through an action research methodology, to evaluate the effectiveness of the mixed media visualisation techniques to teach ICT students networking. Specifically, 3D models of network equipment will be placed in a field and then the augmented reality app can be used to observe packet traversal and routing between the different devices as data travels from the source to the destination. Outcomes are expected to be an overall improvement in final skill level for all students

    Learning Parallel Computations with ParaLab

    Full text link
    In this paper, we present the ParaLab teachware system, which can be used for learning the parallel computation methods. ParaLab provides the tools for simulating the multiprocessor computational systems with various network topologies, for carrying out the computational experiments in the simulation mode, and for evaluating the efficiency of the parallel computation methods. The visual presentation of the parallel computations taking place in the computational experiments is the key feature of the system. ParaLab can be used for the laboratory training within various teaching courses in the field of parallel, distributed, and supercomputer computations

    The global hydrology education resource

    Get PDF
    This article is a selective overview of a range of contemporary teaching resources currently available globally for university hydrology educators, with an emphasis on web-based resources. Major governmental and scientific organizations relevant to the promotion of hydrology teaching are briefly introduced. Selected online teaching materials are then overviewed, i.e. PowerPoint presentations, course materials, and multimedia. A range of websites offering free basic hydrology modelling software are mentioned, together with some data file sources which could be used for teaching. Websites offering a considerable range of general hydrology links are also noted, as are websites providing international and national data sets which might be incorporated into teaching exercises. Finally, some discussion is given on reference material for different modes of hydrology teaching, including laboratory and field exercises

    Enhancing Transportation Education through On-line Simulation using an Agent-Based Demand and Assignment Model

    Get PDF
    This research explores the effectiveness of using simulation as a tool for enhancing classroom learning in the Civil Engineering Department of the University of Minnesota at Twin Cities. The authors developed a modern transportation planning software package, Agent-based Demand and Assignment Model (ADAM), that is consistent with our present understanding of travel behavior, that is platform independent, and that is easy to learn and is thus usable by students. An in-class project incorporated ADAM and the performance of this education strategy was evaluated through pre-class survey, post-class survey, scores in the quiz focusing on travel demand modeling and final scores. Results showed that ADAM effectively enhanced students' self-reported understanding of transportation planning and their skills of forming opinions, evaluating projects and making judgments. Students of some learning styles were found to benefit more than others through simulation-based teaching strategy. Findings in this research could have significant implications for future practice of simulation-based teaching strategy.

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie
    corecore