4 research outputs found

    A Distributed Processing Platform With Reconfigurable Autonomous Nodes

    Full text link
    Distributed processing is a fast growing area of interest due to the exploding popularity of Internet of Things (IoT) and Unmanned Aerial Vehicles (UAV) technologies. IoT is a distributed processing structure by nature, while UAVs evolve from single-UAV applications towards multiple-UAV (teams). The demand for processing capabilities is expanding as well. The general purpose processors (e.g. CPUs) can be used for any type of application, however this flexibility is at the cost of operational efficiency. Application Specific Integrated Circuits (ASICs) are designed for certain types of application and have great operational efficiency, but they rarely can be used for other applications. The reconfigurable chips – Field Programmable Gate Arrays (FPGAs) provide high operational efficiency along with the application flexibility – as they can be reprogrammed with the functionality that is required at the given time. All the above listed aspects are combined in the distributed processing system that is expected to consume low amount of electrical energy. This dissertation proposes a comprehensive solution for the problem of distributed processing equipped with reconfigurable units. The complete and detailed architecture is provided for each element. The design includes operational algorithms that together with the architecture constitute a complete solution for the stated problem. The design of the units is flexible and allows any number and combination of CPUs, ASICs or FPGAs. Units in the proposed design are autonomous – the decisions are taken by individual units, instead of the central node, which is marginalized. The decentralized and autonomous approach provides more flexible and reliable design that is especially important for IoT and teamed UAV applications. The efficiency of the proposed solutions is defined as electrical energy consumption and operation timespan, and is measured using dedicated experimentation system through numerous simulations

    Earth Observations and the Role of UAVs: A Capabilities Assessment

    Get PDF
    This document provides an assessment of the civil UAV missions and technologies and is intended to parallel the Office of the Secretary of Defense UAV Roadmap. The intent of this document is four-fold: 1. Determine and document desired future missions of Earth observation UAVs based on user-defined needs 2. Determine and document the technologies necessary to support those missions 3. Discuss the present state of the platform capabilities and required technologies, identifying those in progress, those planned, and those for which no current plans exist 4. Provide the foundations for development of a comprehensive civil UAV roadmap to complement the Department of Defense (DoD) effort (http://www.acq.osd.mil/uas/). Two aspects of the President's Management Agenda (refer to the document located at: www.whitehouse.gov/omb/budget/fy2002/mgmt.pdf ) are supported by this undertaking. First, it is one that will engage multiple Agencies in the effort as stakeholders and benefactors of the systems. In that sense, the market will be driven by the user requirements and applications. The second aspect is one of supporting economic development in the commercial sector. Market forecasts for the civil use of UAVs have indicated an infant market stage at present with a sustained forecasted growth. There is some difficulty in quantifying the value of the market since the typical estimate excludes system components other than the aerial platforms. Section 2.4 addresses the civil UAV market forecast and lists several independent forecasts. One conclusion that can be drawn from these forecasts is that all show a sustained growth for the duration of each long-term forecast

    Earth Observations and the Role of UAVs: A Capabilities Assessment

    Get PDF
    This three-volume document, based on the draft document located on the website given on page 6, presents the findings of a NASA-led capabilities assessment of Uninhabited Aerial Vehicles (UAVs) for civil (defined as non-DoD) use in Earth observations. Volume 1 is the report that presents the overall assessment and summarizes the data. The second volume contains the appendices and references to address the technologies and capabilities required for viable UAV missions. The third volume is the living portion of this effort and contains the outputs from each of the Technology Working Groups (TWGs) along with the reviews conducted by the Universities Space Research Association (USRA). The focus of this report, intended to complement the Office of the Secretary of Defense UAV Roadmap, is four-fold: 1) To determine and document desired future Earth observation missions for all UAVs based on user-defined needs; 2) To determine and document the technologies necessary to support those missions; 3) To discuss the present state of the art platform capabilities and required technologies, including identifying those in progress, those planned, and those for which no current plans exist; 4) Provide the foundations for development of a comprehensive civil UAV roadmap. It is expected that the content of this report will be updated periodically and used to assess the feasibility of future missions. In addition, this report will provide the foundation to help influence funding decisions to develop those technologies that are considered enabling or necessary but are not contained within approved funding plans. This document is written such that each section will be supported by an Appendix that will give the reader a more detailed discussion of that section's topical materials
    corecore