2,946 research outputs found

    Combining Flexible Queries and Knowledge Anchors to facilitate the exploration of Knowledge Graphs

    Get PDF
    Semantic web and information extraction technologies are enabling the creation of vast information and knowledge repositories, particularly in the form of knowledge graphs comprising entities and the relationships between them. Users are often unfamiliar with the complex structure and vast content of such graphs. Hence, users need to be assisted by tools that support interactive exploration and flexible querying. In this paper we draw on recent work in flexible querying for graph-structured data and identifying good anchors for knowledge graph exploration in order to demonstrate how users can be supported in incrementally querying, exploring and learning from large complex knowledge graphs. We demonstrate our techniques through a case study in the domain of lifelong learning and career guidance

    Explainable Lifelong Stream Learning Based on "Glocal" Pairwise Fusion

    Full text link
    Real-time on-device continual learning applications are used on mobile phones, consumer robots, and smart appliances. Such devices have limited processing and memory storage capabilities, whereas continual learning acquires data over a long period of time. By necessity, lifelong learning algorithms have to be able to operate under such constraints while delivering good performance. This study presents the Explainable Lifelong Learning (ExLL) model, which incorporates several important traits: 1) learning to learn, in a single pass, from streaming data with scarce examples and resources; 2) a self-organizing prototype-based architecture that expands as needed and clusters streaming data into separable groups by similarity and preserves data against catastrophic forgetting; 3) an interpretable architecture to convert the clusters into explainable IF-THEN rules as well as to justify model predictions in terms of what is similar and dissimilar to the inference; and 4) inferences at the global and local level using a pairwise decision fusion process to enhance the accuracy of the inference, hence ``Glocal Pairwise Fusion.'' We compare ExLL against contemporary online learning algorithms for image recognition, using OpenLoris, F-SIOL-310, and Places datasets to evaluate several continual learning scenarios for video streams, low-sample learning, ability to scale, and imbalanced data streams. The algorithms are evaluated for their performance in accuracy, number of parameters, and experiment runtime requirements. ExLL outperforms all algorithms for accuracy in the majority of the tested scenarios.Comment: 24 pages, 8 figure

    Your click decides your fate: Inferring Information Processing and Attrition Behavior from MOOC Video Clickstream Interactions

    Full text link
    In this work, we explore video lecture interaction in Massive Open Online Courses (MOOCs), which is central to student learning experience on these educational platforms. As a research contribution, we operationalize video lecture clickstreams of students into cognitively plausible higher level behaviors, and construct a quantitative information processing index, which can aid instructors to better understand MOOC hurdles and reason about unsatisfactory learning outcomes. Our results illustrate how such a metric inspired by cognitive psychology can help answer critical questions regarding students' engagement, their future click interactions and participation trajectories that lead to in-video & course dropouts. Implications for research and practice are discusse

    Combining flexible queries and knowledge anchors to facilitate the exploration of knowledge graphs

    Get PDF
    Semantic web and information extraction technologies are enabling the creation of vast information and knowledge repositories, particularly in the form of knowledge graphs comprising entities and the relationships between them. Users are often unfamiliar with the complex structure and vast content of such graphs. Hence, users need to be assisted by tools that support interactive exploration and flexible querying. In this paper we draw on recent work in flexible querying for graph-structured data and identifying good anchors for knowledge graph exploration in order to demonstrate how users can be supported in incrementally querying, exploring and learning from large complex knowledge graphs. We demonstrate our techniques through a case study in the domain of lifelong learning and career guidance

    Hybrid human-AI driven open personalized education

    Get PDF
    Attaining those skills that match labor market demand is getting increasingly complicated as prerequisite knowledge, skills, and abilities are evolving dynamically through an uncontrollable and seemingly unpredictable process. Furthermore, people's interests in gaining knowledge pertaining to their personal life (e.g., hobbies and life-hacks) are also increasing dramatically in recent decades. In this situation, anticipating and addressing the learning needs are fundamental challenges to twenty-first century education. The need for such technologies has escalated due to the COVID-19 pandemic, where online education became a key player in all types of training programs. The burgeoning availability of data, not only on the demand side but also on the supply side (in the form of open/free educational resources) coupled with smart technologies, may provide a fertile ground for addressing this challenge. Therefore, this thesis aims to contribute to the literature about the utilization of (open and free-online) educational resources toward goal-driven personalized informal learning, by developing a novel Human-AI based system, called eDoer. In this thesis, we discuss all the new knowledge that was created in order to complete the system development, which includes 1) prototype development and qualitative user validation, 2) decomposing the preliminary requirements into meaningful components, 3) implementation and validation of each component, and 4) a final requirement analysis followed by combining the implemented components in order develop and validate the planned system (eDoer). All in all, our proposed system 1) derives the skill requirements for a wide range of occupations (as skills and jobs are typical goals in informal learning) through an analysis of online job vacancy announcements, 2) decomposes skills into learning topics, 3) collects a variety of open/free online educational resources that address those topics, 4) checks the quality of those resources and topic relevance using our developed intelligent prediction models, 5) helps learners to set their learning goals, 6) recommends personalized learning pathways and learning content based on individual learning goals, and 7) provides assessment services for learners to monitor their progress towards their desired learning objectives. Accordingly, we created a learning dashboard focusing on three Data Science related jobs and conducted an initial validation of eDoer through a randomized experiment. Controlling for the effects of prior knowledge as assessed by the pretest, the randomized experiment provided tentative support for the hypothesis that learners who engaged with personal eDoer recommendations attain higher scores on the posttest than those who did not. The hypothesis that learners who received personalized content in terms of format, length, level of detail, and content type, would achieve higher scores than those receiving non-personalized content was not supported as a statistically significant result

    TrueLearn: A family of bayesian algorithms to match lifelong learners to open educational resources

    Get PDF
    The recent advances in computer-assisted learning systems and the availability of open educational resources today promise a pathway to providing cost-efficient high-quality education to large masses of learners. One of the most ambitious use cases of computer-assisted learning is to build a lifelong learning recommendation system. Unlike short-term courses, lifelong learning presents unique challenges, requiring sophisticated recommendation models that account for a wide range of factors such as background knowledge of learners or novelty of the material while effectively maintaining knowledge states of masses of learners for significantly longer periods of time (ideally, a lifetime). This work presents the foundations towards building a dynamic, scalable and transparent recommendation system for education, modelling learner’s knowledge from implicit data in the form of engagement with open educational resources. We i) use a text ontology based on Wikipedia to automatically extract knowledge components of educational resources and, ii) propose a set of online Bayesian strategies inspired by the well-known areas of item response theory and knowledge tracing. Our proposal, TrueLearn, focuses on recommendations for which the learner has enough background knowledge (so they are able to understand and learn from the material), and the material has enough novelty that would help the learner improve their knowledge about the subject and keep them engaged. We further construct a large open educational video lectures dataset and test the performance of the proposed algorithms, which show clear promise towards building an effective educational recommendation system

    OER Recommendations to Support Career Development

    Get PDF
    This Work in Progress Research paper departs from the recent, turbulent changes in global societies, forcing many citizens to re-skill themselves to (re)gain employment. Learners therefore need to be equipped with skills to be autonomous and strategic about their own skill development. Subsequently, high-quality, on-line, personalized educational content and services are also essential to serve this high demand for learning content. Open Educational Resources (OERs) have high potential to contribute to the mitigation of these problems, as they are available in a wide range of learning and occupational contexts globally. However, their applicability has been limited, due to low metadata quality and complex quality control. These issues resulted in a lack of personalised OER functions, like recommendation and search. Therefore, we suggest a novel, personalised OER recommendation method to match skill development targets with open learning content. This is done by: 1) using an OER quality prediction model based on metadata, OER properties, and content; 2) supporting learners to set individual skill targets based on actual labour market information, and 3) building a personalized OER recommender to help learners to master their skill targets. Accordingly, we built a prototype focusing on Data Science related jobs, and evaluated this prototype with 23 data scientists in different expertise levels. Pilot participants used our prototype for at least 30 minutes and commented on each of the recommended OERs. As a result, more than 400 recommendations were generated and 80.9% of the recommendations were reported as useful.Comment: This paper has been accepted to be published in the proceedings of IEEE Frontiers In Education (FIE) 2020 by IEEE Xplor

    Lifetime policy reuse and the importance of task capacity

    Full text link
    A long-standing challenge in artificial intelligence is lifelong learning. In lifelong learning, many tasks are presented in sequence and learners must efficiently transfer knowledge between tasks while avoiding catastrophic forgetting over long lifetimes. On these problems, policy reuse and other multi-policy reinforcement learning techniques can learn many tasks. However, they can generate many temporary or permanent policies, resulting in memory issues. Consequently, there is a need for lifetime-scalable methods that continually refine a policy library of a pre-defined size. This paper presents a first approach to lifetime-scalable policy reuse. To pre-select the number of policies, a notion of task capacity, the maximal number of tasks that a policy can accurately solve, is proposed. To evaluate lifetime policy reuse using this method, two state-of-the-art single-actor base-learners are compared: 1) a value-based reinforcement learner, Deep Q-Network (DQN) or Deep Recurrent Q-Network (DRQN); and 2) an actor-critic reinforcement learner, Proximal Policy Optimisation (PPO) with or without Long Short-Term Memory layer. By selecting the number of policies based on task capacity, D(R)QN achieves near-optimal performance with 6 policies in a 27-task MDP domain and 9 policies in an 18-task POMDP domain; with fewer policies, catastrophic forgetting and negative transfer are observed. Due to slow, monotonic improvement, PPO requires fewer policies, 1 policy for the 27-task domain and 4 policies for the 18-task domain, but it learns the tasks with lower accuracy than D(R)QN. These findings validate lifetime-scalable policy reuse and suggest using D(R)QN for larger and PPO for smaller library sizes
    • …
    corecore