24,445 research outputs found

    Document Filtering for Long-tail Entities

    Full text link
    Filtering relevant documents with respect to entities is an essential task in the context of knowledge base construction and maintenance. It entails processing a time-ordered stream of documents that might be relevant to an entity in order to select only those that contain vital information. State-of-the-art approaches to document filtering for popular entities are entity-dependent: they rely on and are also trained on the specifics of differentiating features for each specific entity. Moreover, these approaches tend to use so-called extrinsic information such as Wikipedia page views and related entities which is typically only available only for popular head entities. Entity-dependent approaches based on such signals are therefore ill-suited as filtering methods for long-tail entities. In this paper we propose a document filtering method for long-tail entities that is entity-independent and thus also generalizes to unseen or rarely seen entities. It is based on intrinsic features, i.e., features that are derived from the documents in which the entities are mentioned. We propose a set of features that capture informativeness, entity-saliency, and timeliness. In particular, we introduce features based on entity aspect similarities, relation patterns, and temporal expressions and combine these with standard features for document filtering. Experiments following the TREC KBA 2014 setup on a publicly available dataset show that our model is able to improve the filtering performance for long-tail entities over several baselines. Results of applying the model to unseen entities are promising, indicating that the model is able to learn the general characteristics of a vital document. The overall performance across all entities---i.e., not just long-tail entities---improves upon the state-of-the-art without depending on any entity-specific training data.Comment: CIKM2016, Proceedings of the 25th ACM International Conference on Information and Knowledge Management. 201

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure
    corecore