337 research outputs found

    Recent Advances in Reducing Food Losses in the Supply Chain of Fresh Agricultural Produce

    Get PDF
    Fruits and vegetables are highly nutritious agricultural produce with tremendous human health benefits. They are also highly perishable and as such are easily susceptible to spoilage, leading to a reduction in quality attributes and induced food loss. Cold chain technologies have over the years been employed to reduce the quality loss of fruits and vegetables from farm to fork. However, a high amount of losses (≈50%) still occur during the packaging, transportation, and storage of these fresh agricultural produce. This study highlights the current state-of-the-art of various advanced tools employed to reducing the quality loss of fruits and vegetables during the packaging, storage, and transportation cold chain operations, including the application of imaging technology, spectroscopy, multi-sensors, electronic nose, radio frequency identification, printed sensors, acoustic impulse response, and mathematical models. It is shown that computer vision, hyperspectral imaging, multispectral imaging, spectroscopy, X-ray imaging, and mathematical models are well established in monitoring and optimizing process parameters that affect food quality attributes during cold chain operations. We also identified the Internet of Things (IoT) and virtual representation models of a particular fresh produce (digital twins) as emerging technologies that can help monitor and control the uncharted quality evolution during its postharvest life. These advances can help diagnose and take measures against potential problems affecting the quality of fresh produce in the supply chains. Plausible future pathways to further develop these emerging technologies and help in the significant reduction of food losses in the supply chain of fresh produce are discussed. Future research should be directed towards integrating IoT and digital twins in order to intensify real-time monitoring of the cold chain environmental conditions, and the eventual optimization of the postharvest supply chains. This study gives promising insight towards the use of advanced technologies in reducing losses in the postharvest supply chain of fruits and vegetables

    Warehouse management model using FEFO, 5s, and chaotic storage to improve product loading times in small- and medium-sized non-metallic mining companies

    Get PDF
    This article addresses one of the main problems faced by small- and medium-sized business in the non-metallic mining sector in Peru. These companies own warehouses and face the major problem of failing to deliver orders correctly and in a timely manner. This problem usually occurs when the business grows from a small- to medium-sized company in a short span of time; this situation leads to new processes within warehouses that are mostly not standardized. Besides, facilities are no longer optimal in space and the workers are not properly trained. The case study shows that the orders were not delivered on time due to factors such as lack of product identification, although the products have an expiration date and a warehouse without signaling and surrounded by traffic. To tackle this situation, a labeling process has been designed for the products, an adequate distribution technique is used in the warehouse through a newly designed warehouse layout, and a First Expired, First Out system has been implemented. Similarly, the design is accompanied by the 5s tool to provide a basis for order and continuous improvement. The results show that deliveries with delays were reduced from 38% to 10%. These results show that companies can grow rapidly and maintain quality of service through orderly management

    Life Cycle Assessment Tool for Food Supply Chain Environmental Evaluation

    Get PDF
    Food is at the centre of efforts to combat climate change, reduce water stress, pollution, and conserve the world’s wildlife. Assessing the environmental performance of food companies is essential to provide a comprehensive view of the production processes and gain insight into improvement options, but such a tool is currently non-existent in the literature. This study proposed a tool based on the life cycle assessment methodology focused on six stages of the food chain, raw materials acquisition, supplier, manufacturing, distribution, retail and wastes. The user can also evaluate the implementation of Internet of Things (IoT) technologies to reduce food waste applied in the real-world problems. The tool was validated through a case study of a food manufacturing company that prepares frozen meals via vending machines. The LCA results provided by the tool showed that food raw materials production is the main hotspot of nine impact categories. The IoT technologies’ contribution increased the company’s impact by around 0.4%. However, it is expected that employing these monitoring technologies would prevent food waste generation and the associated environmental impacts. Therefore, the results of this paper provide evidence that the proposed tool is suitable for determining environmental impacts and savings of food supply chain companies

    Reliability for Emergency Applications in Internet of Things

    Get PDF
    International audienceThis paper addresses the Internet of Things (IoT) paradigm, which is gaining substantial ground in modern wireless telecommunications. The IoT describes a vision where heterogeneous objects like computers, sensors, Radio-Frequency IDentification (RFID)tags or mobile phones are able to communicate and cooperate efficiently to achieve common goals thanks to a common IP addressing scheme. This paper focuses on the reliability of emergency applications under IoT technology. These applications' success is contingent upon the delivery of high-priority events from many scattered objects to one or more objects without packet loss. Thus, the network has to be selfadaptiveand resilient to errors by providing efficient mechanisms for information distribution especially in the multi-hop scenario. As future perspective, we propose a lightweight and energy efficientjoint mechanism, called AJIA (Adaptive Joint protocol based on Implicit ACK), for packet loss recovery and route quality evaluation in theIoT. In this protocol, we use the overhearing feature, characterizing the wireless channels, as an implicit ACK mechanism. In addition, the protocol allows for an adaptive selection of the routing path based on the link quality

    Energy and Carbon Dioxide Impacts from Lean Logistics and Retailing Systems: A Discrete-event Simulation Approach for the Consumer Goods Industry

    Get PDF
    abstract: Consumer goods supply chains have gradually incorporated lean manufacturing principles to identify and reduce non-value-added activities. Companies implementing lean practices have experienced improvements in cost, quality, and demand responsiveness. However certain elements of these practices, especially those related to transportation and distribution may have detrimental impact on the environment. This study asks: What impact do current best practices in lean logistics and retailing have on environmental performance? The research hypothesis of this dissertation establishes that lean distribution of durable and consumable goods can result in an increased amount of carbon dioxide emissions, leading to climate change and natural resource depletion impacts, while lean retailing operations can reduce carbon emissions. Distribution and retailing phases of the life cycle are characterized in a two-echelon supply chain discrete-event simulation modeled after current operations from leading organizations based in the U.S. Southwest. By conducting an overview of critical sustainability issues and their relationship with consumer products, it is possible to address the environmental implications of lean logistics and retailing operations. Provided the waste reduction nature from lean manufacturing, four lean best practices are examined in detail in order to formulate specific research propositions. These propositions are integrated into an experimental design linking annual carbon dioxide equivalent emissions to: (1) shipment frequency between supply chain partners, (2) proximity between decoupling point of products and final customers, (3) inventory turns at the warehousing level, and (4) degree of supplier integration. All propositions are tested through the use of the simulation model. Results confirmed the four research propositions. Furthermore, they suggest synergy between product shipment frequency among supply chain partners and product management due to lean retailing practices. In addition, the study confirms prior research speculations about the potential carbon intensity from transportation operations subject to lean principles.Dissertation/ThesisPh.D. Sustainability 201

    Exploring Green Information Systems and Technologies as Persuasive Systems: A Systematic Review of Applications in Published Research

    Get PDF
    Adopting eco-friendly behaviors has gained attention in multiple scientific fields ranging from psychology to business, to information systems and computer science. Combining knowledge of creating software solutions with behavioral science studies can enhance research on sustainability and contribute to fostering green attitudes. Considering current state of Green Information Systems and Technologies (IS/IT), we suggest employing persuasive techniques to create “green” solutions. Bridging studies of Persuasive Technologies and Behavior Change Support Systems with the Green IS/IT, we suggest that Persuasive Systems Design principles are capable of enhancing performance of “green” applications as well as improving eco-oriented behaviors in both individual and organizational user contexts. Having reviewed and analyzed published articles on environmentally-oriented systems, we examined which persuasive design principles are currently used and which ones could be utilized better in contemporary and future applications
    corecore