200 research outputs found

    SOM-VAE: Interpretable Discrete Representation Learning on Time Series

    Full text link
    High-dimensional time series are common in many domains. Since human cognition is not optimized to work well in high-dimensional spaces, these areas could benefit from interpretable low-dimensional representations. However, most representation learning algorithms for time series data are difficult to interpret. This is due to non-intuitive mappings from data features to salient properties of the representation and non-smoothness over time. To address this problem, we propose a new representation learning framework building on ideas from interpretable discrete dimensionality reduction and deep generative modeling. This framework allows us to learn discrete representations of time series, which give rise to smooth and interpretable embeddings with superior clustering performance. We introduce a new way to overcome the non-differentiability in discrete representation learning and present a gradient-based version of the traditional self-organizing map algorithm that is more performant than the original. Furthermore, to allow for a probabilistic interpretation of our method, we integrate a Markov model in the representation space. This model uncovers the temporal transition structure, improves clustering performance even further and provides additional explanatory insights as well as a natural representation of uncertainty. We evaluate our model in terms of clustering performance and interpretability on static (Fashion-)MNIST data, a time series of linearly interpolated (Fashion-)MNIST images, a chaotic Lorenz attractor system with two macro states, as well as on a challenging real world medical time series application on the eICU data set. Our learned representations compare favorably with competitor methods and facilitate downstream tasks on the real world data.Comment: Accepted for publication at the Seventh International Conference on Learning Representations (ICLR 2019

    Metrics for Probabilistic Geometries

    Get PDF
    We investigate the geometrical structure of probabilistic generative dimensionality reduction models using the tools of Riemannian geometry. We explicitly define a distribution over the natural metric given by the models. We provide the necessary algorithms to compute expected metric tensors where the distribution over mappings is given by a Gaussian process. We treat the corresponding latent variable model as a Riemannian manifold and we use the expectation of the metric under the Gaussian process prior to define interpolating paths and measure distance between latent points. We show how distances that respect the expected metric lead to more appropriate generation of new data.Comment: UAI 201

    Structured manifolds for motion production and segmentation : a structured Kernel Regression approach

    Get PDF
    Steffen JF. Structured manifolds for motion production and segmentation : a structured Kernel Regression approach. Bielefeld (Germany): Bielefeld University; 2010

    The development of a fire safety management system model

    Get PDF
    Abstract unavailable please refer to PDF

    Bibliographie

    Get PDF

    Visualization and interpretability in probabilistic dimensionality reduction models

    Get PDF
    Over the last few decades, data analysis has swiftly evolved from being a task addressed mainly within the remit of multivariate statistics, to an endevour in which data heterogeneity, complexity and even sheer size, driven by computational advances, call for alternative strategies, such as those provided by pattern recognition and machine learning. Any data analysis process aims to extract new knowledge from data. Knowledge extraction is not a trivial task and it is not limited to the generation of data models or the recognition of patterns. The use of machine learning techniques for multivariate data analysis should in fact aim to achieve a dual target: interpretability and good performance. At best, both aspects of this target should not conflict with each other. This gap between data modelling and knowledge extraction must be acknowledged, in the sense that we can only extract knowledge from models through a process of interpretation. Exploratory information visualization is becoming a very promising tool for interpretation. When exploring multivariate data through visualization, high data dimensionality can be a big constraint, and the use of dimensionality reduction techniques is often compulsory. The need to find flexible methods for data modelling has led to the development of non-linear dimensionality reduction techniques, and many state-of-the-art approaches of this type fall in the domain of probabilistic modelling. These non-linear techniques can provide a flexible data representation and a more faithful model of the observed data compared to the linear ones, but often at the expense of model interpretability, which has an impact in the model visualization results. In manifold learning non-linear dimensionality reduction methods, when a high-dimensional space is mapped onto a lower-dimensional one, the obtained embedded manifold is subject to local geometrical distortion induced by the non-linear mapping. This kind of distortion can often lead to misinterpretations of the data set structure and of the obtained patterns. It is important to give relevance to the problem of how to quantify and visualize the distortion itself in order to interpret data in a more faithful way. The research reported in this thesis focuses on the development of methods and techniques for explicitly reintroducing the local distortion created by non-linear dimensionality reduction models into the low-dimensional visualization of the data that they produce, as well as in the definition of metrics for probabilistic geometries to address this problem. We do not only provide methods only for static data, but also for multivariate time series. The reintegration of the quantified non-linear distortion into the visualization space of the analysed non-linear dimensionality reduction methods is a goal by itself, but we go beyond it and consider alternative adequate metrics for probabilistic manifold learning. For that, we study the role of \textit{Random geometries}, that is, distributions of manifolds, in machine learning and data analysis in general. Methods for the estimation of distributions of data-supporting Riemannian manifolds as well as algorithms for computing interpolants over distributions of manifolds are defined. Experimental results show that inference made according to the random Riemannian metric leads to a more faithful generation of unobserved data.Durant les últimes dècades, l’anàlisi de dades ha evolucionat ràpidament de ser una tasca dirigida principalment dins de l’àmbit de l’estadística multivariant, a un endevour en el qual l’heterogeneïtat de les dades, la complexitat i la simple grandària, impulsats pels avanços computacionals, exigeixen estratègies alternatives, tals com les previstes en el Reconeixement de Formes i l’Aprenentatge Automàtic. Qualsevol procés d’anàlisi de dades té com a objectiu extreure nou coneixement a partir de les dades. L’extracció de coneixement no és una tasca trivial i no es limita a la generació de models de dades o el reconeixement de patrons. L’ús de tècniques d’aprenentatge automàtic per a l’anàlisi de dades multivariades, de fet, hauria de tractar d’aconseguir un objectiu doble: la interpretabilitat i un bon rendiment. En el millor dels casos els dos aspectes d’aquest objectiu no han d’entrar en conflicte entre sí. S’ha de reconèixer la bretxa entre el modelatge de dades i l’extracció de coneixement, en el sentit que només podem extreure coneixement a partir dels models a través d’un procés d’interpretació. L’exploració de la visualització d’informació s’està convertint en una eina molt prometedora per a la interpretació dels models. Quan s’exploren les dades multivariades a través de la visualització, la gran dimensionalitat de les dades pot ser un obstacle, i moltes vegades és obligatori l’ús de tècniques de reducció de dimensionalitat. La necessitat de trobar mètodes flexibles per al modelatge de dades ha portat al desenvolupament de tècniques de reducció de dimensionalitat no lineals. L’estat de l’art d’aquests enfocaments cau moltes vegades en el domini de la modelització probabilística. Aquestes tècniques no lineals poden proporcionar una representació de les dades flexible i un model de les dades més fidel comparades amb els models lineals, però moltes vegades a costa de la interpretabilitat del model, que té un impacte en els resultats de visualització. En els mètodes d’aprenentatge de varietats amb reducció de dimensionalitat no lineals, quan un espai d’alta dimensió es projecta sobre un altre de dimensió menor, la varietat immersa obtinguda està subjecta a una distorsió geomètrica local induïda per la funció no lineal. Aquest tipus de distorsió pot conduir a interpretacions errònies de l’estructura del conjunt de dades i dels patrons obtinguts. Per això, és important donar rellevància al problema de com quantificar i visualitzar aquesta distorsió en sí, amb la finalitat d’interpretar les dades d’una manera més fidel. La recerca presentada en aquesta tesi se centra en el desenvolupament de mètodes i tècniques per reintroduir de forma explícita a l’espai de visualització la distorsió local creada per la funció no lineal. Aquesta recerca se centra també en la definició de mètriques per a geometries probabilístiques per fer front al problema de la distorsió de la funció en els models de reducció de dimensionalitat no lineals. No proporcionem mètodes només per a les dades estàtiques, sinó també per a sèries temporals multivariades. La reintegració de la distorsió no lineal a l’espai de visualització dels mètodes de reducció de dimensionalitat no lineals analitzats és un objectiu en sí mateix, però aquesta anàlisi va més enllà i considera també les mètriques probabilístiques adequades a l’aprenentatge de varietats probabilístiques. Per això, estudiem el paper de les Geometries Aleatòries (distribucions de les varietats) en Aprenentatge Automàtic i anàlisi de dades en general. Es defineixen aquí els mètodes per a l’estimació de les distribucions de varietats de Riemann de suport a les dades, així com els algorismes per calcular interpolants en les distribucions de varietats. Els resultats experimentals mostren que la inferència feta segons les mètriques de les varietats Riemannianes Aleatòries dóna origen a una generació de les dades observades més fidelDurant les últimes dècades, l'anàlisi de dades ha evolucionat ràpidament de ser una tasca dirigida principalment dins de l'àmbit de l'estadística multivariant, a un endevour en el qual l'heterogeneïtat de les dades, la complexitat i la simple grandària, impulsats pels avanços computacionals, exigeixen estratègies alternatives, tals com les previstes en el Reconeixement de Formes i l'Aprenentatge Automàtic. La recerca presentada en aquesta tesi se centra en el desenvolupament de mètodes i tècniques per reintroduir de forma explícita a l'espai de visualització la distorsió local creada per la funció no lineal. Aquesta recerca se centra també en la definició de mètriques per a geometries probabilístiques per fer front al problema de la distorsió de la funció en els models de reducció de dimensionalitat no lineals. No proporcionem mètodes només per a les dades estàtiques, sinó també per a sèries temporals multivariades. La reintegració de la distorsió no lineal a l'espai de visualització dels mètodes de reducció de dimensionalitat no lineals analitzats és un objectiu en sí mateix, però aquesta anàlisi va més enllà i considera també les mètriques probabilístiques adequades a l'aprenentatge de varietats probabilístiques. Per això, estudiem el paper de les Geometries Aleatòries (distribucions de les varietats) en Aprenentatge Automàtic i anàlisi de dades en general. Es defineixen aquí els mètodes per a l'estimació de les distribucions de varietats de Riemann de suport a les dades, així com els algorismes per calcular interpolants en les distribucions de varietats. Els resultats experimentals mostren que la inferència feta segons les mètriques de les varietats Riemannianes Aleatòries dóna origen a una generació de les dades observades més fidel. Qualsevol procés d'anàlisi de dades té com a objectiu extreure nou coneixement a partir de les dades. L'extracció de coneixement no és una tasca trivial i no es limita a la generació de models de dades o el reconeixement de patrons. L'ús de tècniques d'aprenentatge automàtic per a l'anàlisi de dades multivariades, de fet, hauria de tractar d'aconseguir un objectiu doble: la interpretabilitat i un bon rendiment. En el millor dels casos els dos aspectes d'aquest objectiu no han d'entrar en conflicte entre sí. S'ha de reconèixer la bretxa entre el modelatge de dades i l'extracció de coneixement, en el sentit que només podem extreure coneixement a partir dels models a través d'un procés d'interpretació. L'exploració de la visualització d'informació s'està convertint en una eina molt prometedora per a la interpretació dels models. Quan s'exploren les dades multivariades a través de la visualització, la gran dimensionalitat de les dades pot ser un obstacle, i moltes vegades és obligatori l'ús de tècniques de reducció de dimensionalitat. La necessitat de trobar mètodes flexibles per al modelatge de dades ha portat al desenvolupament de tècniques de reducció de dimensionalitat no lineals. L'estat de l'art d'aquests enfocaments cau moltes vegades en el domini de la modelització probabilística. Aquestes tècniques no lineals poden proporcionar una representació de les dades flexible i un model de les dades més fidel comparades amb els models lineals, però moltes vegades a costa de la interpretabilitat del model, que té un impacte en els resultats de visualització. En els mètodes d'aprenentatge de varietats amb reducció de dimensionalitat no lineals, quan un espai d'alta dimensió es projecta sobre un altre de dimensió menor, la varietat immersa obtinguda està subjecta a una distorsió geomètrica local induïda per la funció no lineal. Aquest tipus de distorsió pot conduir a interpretacions errònies de l'estructura del conjunt de dades i dels patrons obtinguts. Per això, és important donar rellevància al problema de com quantificar i visualitzar aquesta distorsió en sì, amb la finalitat d'interpretar les dades d'una manera més fidel

    Robot introspection through learned hidden Markov models

    Get PDF
    In this paper we describe a machine learning approach for acquiring a model of a robot behaviour from raw sensor data. We are interested in automating the acquisition of behavioural models to provide a robot with an introspective capability. We assume that the behaviour of a robot in achieving a task can be modelled as a finite stochastic state transition system. Beginning with data recorded by a robot in the execution of a task, we use unsupervised learning techniques to estimate a hidden Markov model (HMM) that can be used both for predicting and explaining the behaviour of the robot in subsequent executions of the task. We demonstrate that it is feasible to automate the entire process of learning a high quality HMM from the data recorded by the robot during execution of its task.The learned HMM can be used both for monitoring and controlling the behaviour of the robot. The ultimate purpose of our work is to learn models for the full set of tasks associated with a given problem domain, and to integrate these models with a generative task planner. We want to show that these models can be used successfully in controlling the execution of a plan. However, this paper does not develop the planning and control aspects of our work, focussing instead on the learning methodology and the evaluation of a learned model. The essential property of the models we seek to construct is that the most probable trajectory through a model, given the observations made by the robot, accurately diagnoses, or explains, the behaviour that the robot actually performed when making these observations. In the work reported here we consider a navigation task. We explain the learning process, the experimental setup and the structure of the resulting learned behavioural models. We then evaluate the extent to which explanations proposed by the learned models accord with a human observer's interpretation of the behaviour exhibited by the robot in its execution of the task

    Modelling and tracking objects with a topology preserving self-organising neural network

    Get PDF
    Human gestures form an integral part in our everyday communication. We use gestures not only to reinforce meaning, but also to describe the shape of objects, to play games, and to communicate in noisy environments. Vision systems that exploit gestures are often limited by inaccuracies inherent in handcrafted models. These models are generated from a collection of training examples which requires segmentation and alignment. Segmentation in gesture recognition typically involves manual intervention, a time consuming process that is feasible only for a limited set of gestures. Ideally gesture models should be automatically acquired via a learning scheme that enables the acquisition of detailed behavioural knowledge only from topological and temporal observation. The research described in this thesis is motivated by a desire to provide a framework for the unsupervised acquisition and tracking of gesture models. In any learning framework, the initialisation of the shapes is very crucial. Hence, it would be beneficial to have a robust model not prone to noise that can automatically correspond the set of shapes. In the first part of this thesis, we develop a framework for building statistical 2D shape models by extracting, labelling and corresponding landmark points using only topological relations derived from competitive hebbian learning. The method is based on the assumption that correspondences can be addressed as an unsupervised classification problem where landmark points are the cluster centres (nodes) in a high-dimensional vector space. The approach is novel in that the network can be used in cases where the topological structure of the input pattern is not known a priori thus no topology of fixed dimensionality is imposed onto the network. In the second part, we propose an approach to minimise the user intervention in the adaptation process, which requires to specify a priori the number of nodes needed to represent an object, by utilising an automatic criterion for maximum node growth. Furthermore, this model is used to represent motion in image sequences by initialising a suitable segmentation that separates the object of interest from the background. The segmentation system takes into consideration some illumination tolerance, images as inputs from ordinary cameras and webcams, some low to medium cluttered background avoiding extremely cluttered backgrounds, and that the objects are at close range from the camera. In the final part, we extend the framework for the automatic modelling and unsupervised tracking of 2D hand gestures in a sequence of k frames. The aim is to use the tracked frames as training examples in order to build the model and maintain correspondences. To do that we add an active step to the Growing Neural Gas (GNG) network, which we call Active Growing Neural Gas (A-GNG) that takes into consideration not only the geometrical position of the nodes, but also the underlined local feature structure of the image, and the distance vector between successive images. The quality of our model is measured through the calculation of the topographic product. The topographic product is our topology preserving measure which quantifies the neighbourhood preservation. In our system we have applied specific restrictions in the velocity and the appearance of the gestures to simplify the difficulty of the motion analysis in the gesture representation. The proposed framework has been validated on applications related to sign language. The work has great potential in Virtual Reality (VR) applications where the learning and the representation of gestures becomes natural without the need of expensive wear cable sensors

    Practical tools for exploring data and models

    Get PDF
    corecore