16,788 research outputs found

    Recommender System Using Collaborative Filtering Algorithm

    Get PDF
    With the vast amount of data that the world has nowadays, institutions are looking for more and more accurate ways of using this data. Companies like Amazon use their huge amounts of data to give recommendations for users. Based on similarities among items, systems can give predictions for a new item’s rating. Recommender systems use the user, item, and ratings information to predict how other users will like a particular item. Recommender systems are now pervasive and seek to make profit out of customers or successfully meet their needs. However, to reach this goal, systems need to parse a lot of data and collect information, sometimes from different resources, and predict how the user will like the product or item. The computation power needed is considerable. Also, companies try to avoid flooding customer mailboxes with hundreds of products each morning, thus they are looking for one email or text that will make the customer look and act. The motivation to do the project comes from my eagerness to learn website design and get a deep understanding of recommender systems. Applying machine learning dynamically is one of the goals that I set for myself and I wanted to go beyond that and verify my result. Thus, I had to use a large dataset to test the algorithm and compare each technique in terms of error rate. My experience with applying collaborative filtering helps me to understand that finding a solution is not enough, but to strive for a fast and ultimate one. In my case, testing my algorithm in a large data set required me to refine the coding strategy of the algorithm many times to speed the process. In this project, I have designed a website that uses different techniques for recommendations. User-based, Item-based, and Model-based approaches of collaborative filtering are what I have used. Every technique has its way of predicting the user rating for a new item based on existing users’ data. To evaluate each method, I used Movie Lens, an external data set of users, items, and ratings, and calculated the error rate using Mean Absolute Error Rate (MAE) and Root Mean Squared Error (RMSE). Finally, each method has its strengths and weaknesses that relate to the domain in which I am applying these methods

    The contribution of data mining to information science

    Get PDF
    The information explosion is a serious challenge for current information institutions. On the other hand, data mining, which is the search for valuable information in large volumes of data, is one of the solutions to face this challenge. In the past several years, data mining has made a significant contribution to the field of information science. This paper examines the impact of data mining by reviewing existing applications, including personalized environments, electronic commerce, and search engines. For these three types of application, how data mining can enhance their functions is discussed. The reader of this paper is expected to get an overview of the state of the art research associated with these applications. Furthermore, we identify the limitations of current work and raise several directions for future research

    Towards an automated query modification assistant

    Get PDF
    Users who need several queries before finding what they need can benefit from an automatic search assistant that provides feedback on their query modification strategies. We present a method to learn from a search log which types of query modifications have and have not been effective in the past. The method analyses query modifications along two dimensions: a traditional term-based dimension and a semantic dimension, for which queries are enriches with linked data entities. Applying the method to the search logs of two search engines, we identify six opportunities for a query modification assistant to improve search: modification strategies that are commonly used, but that often do not lead to satisfactory results.Comment: 1st International Workshop on Usage Analysis and the Web of Data (USEWOD2011) in the 20th International World Wide Web Conference (WWW2011), Hyderabad, India, March 28th, 201

    Evaluating a workspace's usefulness for image retrieval

    Get PDF
    Image searching is a creative process. We have proposed a novel image retrieval system that supports creative search sessions by allowing the user to organise their search results on a workspace. The workspace’s usefulness is evaluated in a task-oriented and user-centred comparative experiment, involving design professionals and several types of realistic search tasks. In particular, we focus on its effect on task conceptualisation and query formulation. A traditional relevance feedback system serves as a baseline. The results of this study show that the workspace is more useful in terms of both of the above aspects and that the proposed approach leads to a more effective and enjoyable search experience. This paper also highlights the influence of tasks on the users’ search and organisation strategy

    An examination of a large visual lifelog

    Get PDF
    With lifelogging gaining in popularity, we examine the differences between visual lifelog photos and explicitly captured digital photos. We do this based on an examination of over a year of continuous visual lifelog capture and a collection of over ten thousand personal digital photos

    BIBS: A Lecture Webcasting System

    Get PDF
    The Berkeley Internet Broadcasting System (BIBS) is a lecture webcasting system developed and operated by the Berkeley Multimedia Research Center. The system offers live remote viewing and on-demand replay of course lectures using streaming audio and video over the Internet. During the Fall 2000 semester 14 classes were webcast, including several large lower division classes, with a total enrollment of over 4,000 students. Lectures were played over 15,000 times per month during the semester. The primary use of the webcasts is to study for examinations. Students report they watch BIBS lectures because they did not understand material presented in lecture, because they wanted to review what the instructor said about selected topics, because they missed a lecture, and/or because they had difficulty understanding the speaker (e.g., non-native English speakers). Analysis of various survey data suggests that more than 50% of the students enrolled in some large classes view lectures and that as many as 75% of the lectures are played by members of the Berkeley community. Faculty attitudes vary about the virtues of lecture webcasting. Some question the use of this technology while others believe it is a valuable aid to education. Further study is required to accurately assess the pedagogical impact that lecture webcasts have on student learning

    VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback

    Full text link
    Modern recommender systems model people and items by discovering or `teasing apart' the underlying dimensions that encode the properties of items and users' preferences toward them. Critically, such dimensions are uncovered based on user feedback, often in implicit form (such as purchase histories, browsing logs, etc.); in addition, some recommender systems make use of side information, such as product attributes, temporal information, or review text. However one important feature that is typically ignored by existing personalized recommendation and ranking methods is the visual appearance of the items being considered. In this paper we propose a scalable factorization model to incorporate visual signals into predictors of people's opinions, which we apply to a selection of large, real-world datasets. We make use of visual features extracted from product images using (pre-trained) deep networks, on top of which we learn an additional layer that uncovers the visual dimensions that best explain the variation in people's feedback. This not only leads to significantly more accurate personalized ranking methods, but also helps to alleviate cold start issues, and qualitatively to analyze the visual dimensions that influence people's opinions.Comment: AAAI'1
    corecore