3,021 research outputs found

    Know Your Enemy: Stealth Configuration-Information Gathering in SDN

    Full text link
    Software Defined Networking (SDN) is a network architecture that aims at providing high flexibility through the separation of the network logic from the forwarding functions. The industry has already widely adopted SDN and researchers thoroughly analyzed its vulnerabilities, proposing solutions to improve its security. However, we believe important security aspects of SDN are still left uninvestigated. In this paper, we raise the concern of the possibility for an attacker to obtain knowledge about an SDN network. In particular, we introduce a novel attack, named Know Your Enemy (KYE), by means of which an attacker can gather vital information about the configuration of the network. This information ranges from the configuration of security tools, such as attack detection thresholds for network scanning, to general network policies like QoS and network virtualization. Additionally, we show that an attacker can perform a KYE attack in a stealthy fashion, i.e., without the risk of being detected. We underline that the vulnerability exploited by the KYE attack is proper of SDN and is not present in legacy networks. To address the KYE attack, we also propose an active defense countermeasure based on network flows obfuscation, which considerably increases the complexity for a successful attack. Our solution offers provable security guarantees that can be tailored to the needs of the specific network under consideratio

    Reliability, availability and security of wireless networks in the community

    Get PDF
    Wireless networking increases the flexibility in the home, work place and community to connect to the Internet without being tied to a single location. Wireless networking has rapidly increased in popularity over recent years. There has also been a change in the use of the internet by users. Home users have embraced wireless technology and businesses see it as having a great impact on their operational efficiency. Both home users and industry are sending increasingly sensitive information through these wireless networks as online delivery of banking, commercial and governmental services becomes more widespread. However undeniable the benefits of wireless networking are, there are additional risks that do not exist in wired networks. It is imperative that adequate assessment and management of risk is undertaken by businesses and home users. This paper reviews wireless network protocols, investigates issues of reliability, availability and security when using wireless networks. The paper, by use of a case study, illustrates the issues and importance of implementing secured wireless networks, and shows the significance of the issue. The paper presents a discussion of the case study and a set of recommendations to mitigate the threat

    Ubic: Bridging the gap between digital cryptography and the physical world

    Full text link
    Advances in computing technology increasingly blur the boundary between the digital domain and the physical world. Although the research community has developed a large number of cryptographic primitives and has demonstrated their usability in all-digital communication, many of them have not yet made their way into the real world due to usability aspects. We aim to make another step towards a tighter integration of digital cryptography into real world interactions. We describe Ubic, a framework that allows users to bridge the gap between digital cryptography and the physical world. Ubic relies on head-mounted displays, like Google Glass, resource-friendly computer vision techniques as well as mathematically sound cryptographic primitives to provide users with better security and privacy guarantees. The framework covers key cryptographic primitives, such as secure identification, document verification using a novel secure physical document format, as well as content hiding. To make a contribution of practical value, we focused on making Ubic as simple, easily deployable, and user friendly as possible.Comment: In ESORICS 2014, volume 8712 of Lecture Notes in Computer Science, pp. 56-75, Wroclaw, Poland, September 7-11, 2014. Springer, Berlin, German

    ANALYSIS OF BOTNET CLASSIFICATION AND DETECTION BASED ON C&C CHANNEL

    Get PDF
    Botnet is a serious threat to cyber-security. Botnet is a robot that can enter the computer and perform DDoS attacks through attacker’s command. Botnets are designed to extract confidential information from network channels such as LAN, Peer or Internet. They perform on hacker's intention through Command & Control(C&C) where attacker can control the whole network and can clinch illegal activities such as identity theft, unauthorized logins and money transactions. Thus, for security reason, it is very important to understand botnet behavior and go through its countermeasures. This thesis draws together the main ideas of network anomaly, botnet behavior, taxonomy of botnet, famous botnet attacks and detections processes. Based on network protocols, botnets are mainly 3 types: IRC, HTTP, and P2P botnet. All 3 botnet's behavior, vulnerability, and detection processes with examples are explained individually in upcoming chapters. Meanwhile saying shortly, IRC Botnet refers to early botnets targeting chat and messaging applications, HTTP Botnet targets internet browsing/domains and P2P Botnet targets peer network i.e. decentralized servers. Each Botnet's design, target, infecting and spreading mechanism can be different from each other. For an instance, IRC Botnet is targeted for small environment attacks where HTTP and P2P are for huge network traffic. Furthermore, detection techniques and algorithms filtration processes are also different among each of them. Based on these individual botnet's behavior, many research papers have analyzed numerous botnet detection techniques such as graph-based structure, clustering algorithm and so on. Thus, this thesis also analyzes popular detection mechanisms, C&C channels, Botnet working patterns, recorded datasets, results and false positive rates of bots prominently found in IRC, HTTP and P2P. Research area covers C&C channels, botnet behavior, domain browsing, IRC, algorithms, intrusion and detection, network and peer, security and test results. Research articles are conducted from scientific books through online source and University of Turku library

    Intrusion Detection for Cyber-Physical Attacks in Cyber-Manufacturing System

    Get PDF
    In the vision of Cyber-Manufacturing System (CMS) , the physical components such as products, machines, and tools are connected, identifiable and can communicate via the industrial network and the Internet. This integration of connectivity enables manufacturing systems access to computational resources, such as cloud computing, digital twin, and blockchain. The connected manufacturing systems are expected to be more efficient, sustainable and cost-effective. However, the extensive connectivity also increases the vulnerability of physical components. The attack surface of a connected manufacturing environment is greatly enlarged. Machines, products and tools could be targeted by cyber-physical attacks via the network. Among many emerging security concerns, this research focuses on the intrusion detection of cyber-physical attacks. The Intrusion Detection System (IDS) is used to monitor cyber-attacks in the computer security domain. For cyber-physical attacks, however, there is limited work. Currently, the IDS cannot effectively address cyber-physical attacks in manufacturing system: (i) the IDS takes time to reveal true alarms, sometimes over months; (ii) manufacturing production life-cycle is shorter than the detection period, which can cause physical consequences such as defective products and equipment damage; (iii) the increasing complexity of network will also make the detection period even longer. This gap leaves the cyber-physical attacks in manufacturing to cause issues like over-wearing, breakage, defects or any other changes that the original design didn’t intend. A review on the history of cyber-physical attacks, and available detection methods are presented. The detection methods are reviewed in terms of intrusion detection algorithms, and alert correlation methods. The attacks are further broken down into a taxonomy covering four dimensions with over thirty attack scenarios to comprehensively study and simulate cyber-physical attacks. A new intrusion detection and correlation method was proposed to address the cyber-physical attacks in CMS. The detection method incorporates IDS software in cyber domain and machine learning analysis in physical domain. The correlation relies on a new similarity-based cyber-physical alert correlation method. Four experimental case studies were used to validate the proposed method. Each case study focused on different aspects of correlation method performance. The experiments were conducted on a security-oriented manufacturing testbed established for this research at Syracuse University. The results showed the proposed intrusion detection and alert correlation method can effectively disclose unknown attack, known attack and attack interference that causes false alarms. In case study one, the alarm reduction rate reached 99.1%, with improvement of detection accuracy from 49.6% to 100%. The case studies also proved the proposed method can mitigate false alarms, detect attacks on multiple machines, and attacks from the supply chain. This work contributes to the security domain in cyber-physical manufacturing systems, with the focus on intrusion detection. The dataset collected during the experiments has been shared with the research community. The alert correlation methodology also contributes to cyber-physical systems, such as smart grid and connected vehicles, which requires enhanced security protection in today’s connected world

    Development of a Client-Side Evil Twin Attack Detection System for Public Wi-Fi Hotspots based on Design Science Approach

    Get PDF
    Users and providers benefit considerably from public Wi-Fi hotspots. Users receive wireless Internet access and providers draw new prospective customers. While users are able to enjoy the ease of Wi-Fi Internet hotspot networks in public more conveniently, they are more susceptible to a particular type of fraud and identify theft, referred to as evil twin attack (ETA). Through setting up an ETA, an attacker can intercept sensitive data such as passwords or credit card information by snooping into the communication links. Since the objective of free open (unencrypted) public Wi-Fi hotspots is to provide ease of accessibility and to entice customers, no security mechanisms are in place. The public’s lack of awareness of the security threat posed by free open public Wi-Fi hotspots makes this problem even more heinous. Client-side systems to help wireless users detect and protect themselves from evil twin attacks in public Wi-Fi hotspots are in great need. In this dissertation report, the author explored the problem of the need for client-side detection systems that will allow wireless users to help protect their data from evil twin attacks while using free open public Wi-Fi. The client-side evil twin attack detection system constructed as part of this dissertation linked the gap between the need for wireless security in free open public Wi-Fi hotspots and limitations in existing client-side evil twin attack detection solutions. Based on design science research (DSR) literature, Hevner’s seven guidelines of DSR, Peffer’s design science research methodology (DSRM), Gregor’s IS design theory, and Hossen & Wenyuan’s (2014) study evaluation methodology, the author developed design principles, procedures and specifications to guide the construction, implementation, and evaluation of a prototype client-side evil twin attack detection artifact. The client-side evil twin attack detection system was evaluated in a hotel public Wi-Fi environment. The goal of this research was to develop a more effective, efficient, and practical client-side detection system for wireless users to independently detect and protect themselves from mobile evil twin attacks while using free open public Wi-Fi hotspots. The experimental results showed that client-side evil twin attack detection system can effectively detect and protect users from mobile evil twin AP attacks in public Wi-Fi hotspots in various real-world scenarios despite time delay caused by many factors
    • …
    corecore