13 research outputs found

    A comparative analysis of algorithms for satellite operations scheduling

    Get PDF
    Scheduling is employed in everyday life, ranging from meetings to manufacturing and operations among other activities. One instance of scheduling in a complex real-life setting is space mission operations scheduling, i.e. instructing a satellite to perform fitting tasks during predefined time periods with a varied frequency to achieve its mission goals. Mission operations scheduling is pivotal to the success of any space mission, choreographing every task carefully, accounting for technological and environmental limitations and constraints along with mission goals.;It remains standard practice to this day, to generate operations schedules manually ,i.e. to collect requirements from individual stakeholders, collate them into a timeline, compare against feasibility and available satellite resources, and find potential conflicts. Conflict resolution is done by hand, checked by a simulator and uplinked to the satellite weekly. This process is time consuming, bears risks and can be considered sub-optimal.;A pertinent question arises: can we automate the process of satellite mission operations scheduling? And if we can, what method should be used to generate the schedules? In an attempt to address this question, a comparison of algorithms was deemed suitable in order to explore their suitability for this particular application.;The problem of mission operations scheduling was initially studied through literature and numerous interviews with experts. A framework was developed to approximate a generic Low Earth Orbit satellite, its environment and its mission requirements. Optimisation algorithms were chosen from different categories such as single-point stochastic without memory (Simulated Annealing, Random Search), multi-point stochastic with memory (Genetic Algorithm, Ant Colony System, Differential Evolution) and were run both with and without Local Search.;The aforementioned algorithmic set was initially tuned using a single 89-minute Low Earth Orbit of a scientific mission to Mars. It was then applied to scheduling operations during one high altitude Low Earth Orbit (2.4hrs) of an experimental mission.;It was then applied to a realistic test-case inspired by the European Space Agency PROBA-2 mission, comprising a 1 day schedule and subsequently a 7 day schedule - equal to a Short Term Plan as defined by the European Space Agency.;The schedule fitness - corresponding to the Hamming distance between mission requirements and generated schedule - are presented along with the execution time of each run. Algorithmic performance is discussed and put at the disposal of mission operations experts for consideration.Scheduling is employed in everyday life, ranging from meetings to manufacturing and operations among other activities. One instance of scheduling in a complex real-life setting is space mission operations scheduling, i.e. instructing a satellite to perform fitting tasks during predefined time periods with a varied frequency to achieve its mission goals. Mission operations scheduling is pivotal to the success of any space mission, choreographing every task carefully, accounting for technological and environmental limitations and constraints along with mission goals.;It remains standard practice to this day, to generate operations schedules manually ,i.e. to collect requirements from individual stakeholders, collate them into a timeline, compare against feasibility and available satellite resources, and find potential conflicts. Conflict resolution is done by hand, checked by a simulator and uplinked to the satellite weekly. This process is time consuming, bears risks and can be considered sub-optimal.;A pertinent question arises: can we automate the process of satellite mission operations scheduling? And if we can, what method should be used to generate the schedules? In an attempt to address this question, a comparison of algorithms was deemed suitable in order to explore their suitability for this particular application.;The problem of mission operations scheduling was initially studied through literature and numerous interviews with experts. A framework was developed to approximate a generic Low Earth Orbit satellite, its environment and its mission requirements. Optimisation algorithms were chosen from different categories such as single-point stochastic without memory (Simulated Annealing, Random Search), multi-point stochastic with memory (Genetic Algorithm, Ant Colony System, Differential Evolution) and were run both with and without Local Search.;The aforementioned algorithmic set was initially tuned using a single 89-minute Low Earth Orbit of a scientific mission to Mars. It was then applied to scheduling operations during one high altitude Low Earth Orbit (2.4hrs) of an experimental mission.;It was then applied to a realistic test-case inspired by the European Space Agency PROBA-2 mission, comprising a 1 day schedule and subsequently a 7 day schedule - equal to a Short Term Plan as defined by the European Space Agency.;The schedule fitness - corresponding to the Hamming distance between mission requirements and generated schedule - are presented along with the execution time of each run. Algorithmic performance is discussed and put at the disposal of mission operations experts for consideration

    The Art of Movies

    Get PDF
    Movie is considered to be an important art form; films entertain, educate, enlighten and inspire audiences. Film is a term that encompasses motion pictures as individual projects, as well as — in metonymy — the field in general. The origin of the name comes from the fact that photographic film (also called filmstock) has historically been the primary medium for recording and displaying motion pictures. Many other terms exist — motion pictures (or just pictures or “picture”), the silver screen, photoplays, the cinema, picture shows, flicks — and commonly movies

    The Music Sound

    Get PDF
    A guide for music: compositions, events, forms, genres, groups, history, industry, instruments, language, live music, musicians, songs, musicology, techniques, terminology , theory, music video. Music is a human activity which involves structured and audible sounds, which is used for artistic or aesthetic, entertainment, or ceremonial purposes. The traditional or classical European aspects of music often listed are those elements given primacy in European-influenced classical music: melody, harmony, rhythm, tone color/timbre, and form. A more comprehensive list is given by stating the aspects of sound: pitch, timbre, loudness, and duration. Common terms used to discuss particular pieces include melody, which is a succession of notes heard as some sort of unit; chord, which is a simultaneity of notes heard as some sort of unit; chord progression, which is a succession of chords (simultaneity succession); harmony, which is the relationship between two or more pitches; counterpoint, which is the simultaneity and organization of different melodies; and rhythm, which is the organization of the durational aspects of music

    Presence 2005: the eighth annual international workshop on presence, 21-23 September, 2005 University College London (Conference proceedings)

    Get PDF
    OVERVIEW (taken from the CALL FOR PAPERS) Academics and practitioners with an interest in the concept of (tele)presence are invited to submit their work for presentation at PRESENCE 2005 at University College London in London, England, September 21-23, 2005. The eighth in a series of highly successful international workshops, PRESENCE 2005 will provide an open discussion forum to share ideas regarding concepts and theories, measurement techniques, technology, and applications related to presence, the psychological state or subjective perception in which a person fails to accurately and completely acknowledge the role of technology in an experience, including the sense of 'being there' experienced by users of advanced media such as virtual reality. The concept of presence in virtual environments has been around for at least 15 years, and the earlier idea of telepresence at least since Minsky's seminal paper in 1980. Recently there has been a burst of funded research activity in this area for the first time with the European FET Presence Research initiative. What do we really know about presence and its determinants? How can presence be successfully delivered with today's technology? This conference invites papers that are based on empirical results from studies of presence and related issues and/or which contribute to the technology for the delivery of presence. Papers that make substantial advances in theoretical understanding of presence are also welcome. The interest is not solely in virtual environments but in mixed reality environments. Submissions will be reviewed more rigorously than in previous conferences. High quality papers are therefore sought which make substantial contributions to the field. Approximately 20 papers will be selected for two successive special issues for the journal Presence: Teleoperators and Virtual Environments. PRESENCE 2005 takes place in London and is hosted by University College London. The conference is organized by ISPR, the International Society for Presence Research and is supported by the European Commission's FET Presence Research Initiative through the Presencia and IST OMNIPRES projects and by University College London

    Ein mobiler Serviceroboter zur Automatisierung der Probenahme und des Probenmanagements in einem biotechnologischen Pilotlabor

    Get PDF
    Scherer T. A mobile service robot for automisation of sample taking and sample management in a biotechnological pilot laboratory. Bielefeld (Germany): Bielefeld University; 2004.In biotechnologischen Laboratorien ist die Qualität der typischerweise pharmazeutischen Produkte ein wortwörtlich lebenswichtiges Ziel. Die Qualität der Zellkultivierungen wurde historisch nur durch off-line Messungen von physikalischen Prozessparametern wie pH und pO2 sichergestellt. Biologische Parameter wie die Zelldichte und -viabilität wurden nur off-line gemessen, weil das dazu notwendige Probenmanagement hochkomplizierte Manipulationen und Analysen beinhaltet und deshalb nicht automatisiert werden konnte. Es gibt zwar mehrere automatisierte Geräte, um einem Labortechniker zu assistieren, aber kein System, welches das gesamte Probenmanagement automatisiert. In dieser Arbeit wird ein neuer Typ von Serviceroboter präsentiert, der aus einem auf einer mobilen Plattform montierten Roboterarm besteht und diese Lücke schließt. Dieser Roboter muss eine ganze Reihe von Problemen bewältigen: Er muss seine Position im Labor bestimmen können (Lokalisation), er muss eine kollisionsfreie Bahn zu den beteiligten Geräten finden können (Bahnplanung mit Hindernisvermeidung), er darf bei seinen Bewegungen keine Menschen gefährden oder Laborausrüstung beschädigen (Kollisionsvermeidung), er muss die zu bedienenden Geräte erkennen und ihre Position präzise messen können (Bildverarbeitung), er muss sie bedienen können (Armsteuerung), er muss Objekte greifen können (Greifer und Finger) und er muss sie gefügig handhaben können, um sie nicht zu beschädigen (Kraftregelung). Er muss autonom sein, um nur die allernotwendigste Menge an Benutzereingriffen zu benötigen, und doch durch ein Laborsteuerprogramm kontrollierbar sein, um Eingriffe zu erlauben. Schließlich muss er einfach durch ungeschultes Personal zu warten sein. All diese Aspekte werden von dem in dieser Arbeit präsentierten neuen Robotersystem abgedeckt.In biotechnolgical laboratories, the quality of the typically pharmaceutical product is a literally life-important goal. Historically, the quality of the cell cultivations was ensured by on-line measurements of physical process parameters like pH and pO2 only. Biological parameters like cell density and viability were only measured off-line, because the necessary sample management involves highly complicated manipulations and analyses and could therefore not be automated. Various automated devices to assist a laboratory technician do exist, but so far no system to automate the entire sample management. In this work a novel type of service robot consisting of a robot arm mounted on a mobile platform is presented that closes this gap. This robot has to master a multitude of problems: It must be able to locate its position in the laboratory (localisation), it must be able to find a collision-free path to the involved devices (path planning with obstacle avoidance), it must not endanger humans or damage laboratory equipment while moving (collision avoidance), it must be able to recognize the devices to be manipulated and measure their precise position (computer vision), it must be able to manipulate them (arm control), it must be able to grasp objects (gripper and fingers) and it must be able to handle them with compliance in order to not damage them (force control). It must be autonomous in order to only require the least possible amount of user intervention, and yet controllable by a laboratory control program in order to allow intervention. Finally, it must be easily maintainable by non-expert personell. All these aspects are covered by the novel robot system presented in this thesis

    Formal Verification of Distributed Systems

    Get PDF
    Fokkink, W.J. [Promotor

    Using SPIN to Analyse the Tree Identification Phase of the IEEE 1394 High-Performance Serial Bus(FireWire)Protocol

    Get PDF
    We describe how the tree identification phase of the IEEE 1394 high-performance serial bus (FireWire) protocol is modelled in Promela and verified using SPIN. The verification of arbitrary system configurations is discussed
    corecore