2,719 research outputs found

    A Logic Programming Approach to Knowledge-State Planning: Semantics and Complexity

    Full text link
    We propose a new declarative planning language, called K, which is based on principles and methods of logic programming. In this language, transitions between states of knowledge can be described, rather than transitions between completely described states of the world, which makes the language well-suited for planning under incomplete knowledge. Furthermore, it enables the use of default principles in the planning process by supporting negation as failure. Nonetheless, K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, which shows that the language is very flexible. As we demonstrate on particular examples, the use of knowledge states may allow for a natural and compact problem representation. We then provide a thorough analysis of the computational complexity of K, and consider different planning problems, including standard planning and secure planning (also known as conformant planning) problems. We show that these problems have different complexities under various restrictions, ranging from NP to NEXPTIME in the propositional case. Our results form the theoretical basis for the DLV^K system, which implements the language K on top of the DLV logic programming system.Comment: 48 pages, appeared as a Technical Report at KBS of the Vienna University of Technology, see http://www.kr.tuwien.ac.at/research/reports

    Answer Set Planning Under Action Costs

    Full text link
    Recently, planning based on answer set programming has been proposed as an approach towards realizing declarative planning systems. In this paper, we present the language Kc, which extends the declarative planning language K by action costs. Kc provides the notion of admissible and optimal plans, which are plans whose overall action costs are within a given limit resp. minimum over all plans (i.e., cheapest plans). As we demonstrate, this novel language allows for expressing some nontrivial planning tasks in a declarative way. Furthermore, it can be utilized for representing planning problems under other optimality criteria, such as computing ``shortest'' plans (with the least number of steps), and refinement combinations of cheapest and fastest plans. We study complexity aspects of the language Kc and provide a transformation to logic programs, such that planning problems are solved via answer set programming. Furthermore, we report experimental results on selected problems. Our experience is encouraging that answer set planning may be a valuable approach to expressive planning systems in which intricate planning problems can be naturally specified and solved

    Sensor Synthesis for POMDPs with Reachability Objectives

    Full text link
    Partially observable Markov decision processes (POMDPs) are widely used in probabilistic planning problems in which an agent interacts with an environment using noisy and imprecise sensors. We study a setting in which the sensors are only partially defined and the goal is to synthesize "weakest" additional sensors, such that in the resulting POMDP, there is a small-memory policy for the agent that almost-surely (with probability~1) satisfies a reachability objective. We show that the problem is NP-complete, and present a symbolic algorithm by encoding the problem into SAT instances. We illustrate trade-offs between the amount of memory of the policy and the number of additional sensors on a simple example. We have implemented our approach and consider three classical POMDP examples from the literature, and show that in all the examples the number of sensors can be significantly decreased (as compared to the existing solutions in the literature) without increasing the complexity of the policies.Comment: arXiv admin note: text overlap with arXiv:1511.0845

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates

    Get PDF
    The optimization of algorithm (hyper-)parameters is crucial for achieving peak performance across a wide range of domains, ranging from deep neural networks to solvers for hard combinatorial problems. The resulting algorithm configuration (AC) problem has attracted much attention from the machine learning community. However, the proper evaluation of new AC procedures is hindered by two key hurdles. First, AC benchmarks are hard to set up. Second and even more significantly, they are computationally expensive: a single run of an AC procedure involves many costly runs of the target algorithm whose performance is to be optimized in a given AC benchmark scenario. One common workaround is to optimize cheap-to-evaluate artificial benchmark functions (e.g., Branin) instead of actual algorithms; however, these have different properties than realistic AC problems. Here, we propose an alternative benchmarking approach that is similarly cheap to evaluate but much closer to the original AC problem: replacing expensive benchmarks by surrogate benchmarks constructed from AC benchmarks. These surrogate benchmarks approximate the response surface corresponding to true target algorithm performance using a regression model, and the original and surrogate benchmark share the same (hyper-)parameter space. In our experiments, we construct and evaluate surrogate benchmarks for hyperparameter optimization as well as for AC problems that involve performance optimization of solvers for hard combinatorial problems, drawing training data from the runs of existing AC procedures. We show that our surrogate benchmarks capture overall important characteristics of the AC scenarios, such as high- and low-performing regions, from which they were derived, while being much easier to use and orders of magnitude cheaper to evaluate
    corecore