491 research outputs found

    String rewriting for Double Coset Systems

    Full text link
    In this paper we show how string rewriting methods can be applied to give a new method of computing double cosets. Previous methods for double cosets were enumerative and thus restricted to finite examples. Our rewriting methods do not suffer this restriction and we present some examples of infinite double coset systems which can now easily be solved using our approach. Even when both enumerative and rewriting techniques are present, our rewriting methods will be competitive because they i) do not require the preliminary calculation of cosets; and ii) as with single coset problems, there are many examples for which rewriting is more effective than enumeration. Automata provide the means for identifying expressions for normal forms in infinite situations and we show how they may be constructed in this setting. Further, related results on logged string rewriting for monoid presentations are exploited to show how witnesses for the computations can be provided and how information about the subgroups and the relations between them can be extracted. Finally, we discuss how the double coset problem is a special case of the problem of computing induced actions of categories which demonstrates that our rewriting methods are applicable to a much wider class of problems than just the double coset problem.Comment: accepted for publication by the Journal of Symbolic Computatio

    Innocent strategies as presheaves and interactive equivalences for CCS

    Get PDF
    Seeking a general framework for reasoning about and comparing programming languages, we derive a new view of Milner's CCS. We construct a category E of plays, and a subcategory V of views. We argue that presheaves on V adequately represent innocent strategies, in the sense of game semantics. We then equip innocent strategies with a simple notion of interaction. This results in an interpretation of CCS. Based on this, we propose a notion of interactive equivalence for innocent strategies, which is close in spirit to Beffara's interpretation of testing equivalences in concurrency theory. In this framework we prove that the analogues of fair and must testing equivalences coincide, while they differ in the standard setting.Comment: In Proceedings ICE 2011, arXiv:1108.014

    Rewriting Systems and the Modelling of Biological Systems

    Get PDF
    This paper gives a brief survey of the use of algebraic rewriting systems for modelling and simulating various biological processes, particularly at the cellular level
    corecore