2,366 research outputs found

    A Model Approximation Scheme for Planning in Partially Observable Stochastic Domains

    Full text link
    Partially observable Markov decision processes (POMDPs) are a natural model for planning problems where effects of actions are nondeterministic and the state of the world is not completely observable. It is difficult to solve POMDPs exactly. This paper proposes a new approximation scheme. The basic idea is to transform a POMDP into another one where additional information is provided by an oracle. The oracle informs the planning agent that the current state of the world is in a certain region. The transformed POMDP is consequently said to be region observable. It is easier to solve than the original POMDP. We propose to solve the transformed POMDP and use its optimal policy to construct an approximate policy for the original POMDP. By controlling the amount of additional information that the oracle provides, it is possible to find a proper tradeoff between computational time and approximation quality. In terms of algorithmic contributions, we study in details how to exploit region observability in solving the transformed POMDP. To facilitate the study, we also propose a new exact algorithm for general POMDPs. The algorithm is conceptually simple and yet is significantly more efficient than all previous exact algorithms.Comment: See http://www.jair.org/ for any accompanying file

    Restricted Value Iteration: Theory and Algorithms

    Full text link
    Value iteration is a popular algorithm for finding near optimal policies for POMDPs. It is inefficient due to the need to account for the entire belief space, which necessitates the solution of large numbers of linear programs. In this paper, we study value iteration restricted to belief subsets. We show that, together with properly chosen belief subsets, restricted value iteration yields near-optimal policies and we give a condition for determining whether a given belief subset would bring about savings in space and time. We also apply restricted value iteration to two interesting classes of POMDPs, namely informative POMDPs and near-discernible POMDPs

    POMDPs under Probabilistic Semantics

    Full text link
    We consider partially observable Markov decision processes (POMDPs) with limit-average payoff, where a reward value in the interval [0,1] is associated to every transition, and the payoff of an infinite path is the long-run average of the rewards. We consider two types of path constraints: (i) quantitative constraint defines the set of paths where the payoff is at least a given threshold lambda_1 in (0,1]; and (ii) qualitative constraint which is a special case of quantitative constraint with lambda_1=1. We consider the computation of the almost-sure winning set, where the controller needs to ensure that the path constraint is satisfied with probability 1. Our main results for qualitative path constraint are as follows: (i) the problem of deciding the existence of a finite-memory controller is EXPTIME-complete; and (ii) the problem of deciding the existence of an infinite-memory controller is undecidable. For quantitative path constraint we show that the problem of deciding the existence of a finite-memory controller is undecidable.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    Anytime Point-Based Approximations for Large POMDPs

    Full text link
    The Partially Observable Markov Decision Process has long been recognized as a rich framework for real-world planning and control problems, especially in robotics. However exact solutions in this framework are typically computationally intractable for all but the smallest problems. A well-known technique for speeding up POMDP solving involves performing value backups at specific belief points, rather than over the entire belief simplex. The efficiency of this approach, however, depends greatly on the selection of points. This paper presents a set of novel techniques for selecting informative belief points which work well in practice. The point selection procedure is combined with point-based value backups to form an effective anytime POMDP algorithm called Point-Based Value Iteration (PBVI). The first aim of this paper is to introduce this algorithm and present a theoretical analysis justifying the choice of belief selection technique. The second aim of this paper is to provide a thorough empirical comparison between PBVI and other state-of-the-art POMDP methods, in particular the Perseus algorithm, in an effort to highlight their similarities and differences. Evaluation is performed using both standard POMDP domains and realistic robotic tasks

    Expectation Optimization with Probabilistic Guarantees in POMDPs with Discounted-sum Objectives

    Full text link
    Partially-observable Markov decision processes (POMDPs) with discounted-sum payoff are a standard framework to model a wide range of problems related to decision making under uncertainty. Traditionally, the goal has been to obtain policies that optimize the expectation of the discounted-sum payoff. A key drawback of the expectation measure is that even low probability events with extreme payoff can significantly affect the expectation, and thus the obtained policies are not necessarily risk-averse. An alternate approach is to optimize the probability that the payoff is above a certain threshold, which allows obtaining risk-averse policies, but ignores optimization of the expectation. We consider the expectation optimization with probabilistic guarantee (EOPG) problem, where the goal is to optimize the expectation ensuring that the payoff is above a given threshold with at least a specified probability. We present several results on the EOPG problem, including the first algorithm to solve it.Comment: Full version of a paper published at IJCAI/ECAI 201

    Energy Efficient Execution of POMDP Policies

    Get PDF
    Recent advances in planning techniques for partially observable Markov decision processes have focused on online search techniques and offline point-based value iteration. While these techniques allow practitioners to obtain policies for fairly large problems, they assume that a non-negligible amount of computation can be done between each decision point. In contrast, the recent proliferation of mobile and embedded devices has lead to a surge of applications that could benefit from state of the art planning techniques if they can operate under severe constraints on computational resources. To that effect, we describe two techniques to compile policies into controllers that can be executed by a mere table lookup at each decision point. The first approach compiles policies induced by a set of alpha vectors (such as those obtained by point-based techniques) into approximately equivalent controllers, while the second approach performs a simulation to compile arbitrary policies into approximately equivalent controllers. We also describe an approach to compress controllers by removing redundant and dominated nodes, often yielding smaller and yet better controllers. Further compression and higher value can sometimes be obtained by considering stochastic controllers. The compilation and compression techniques are demonstrated on benchmark problems as well as a mobile application to help persons with Alzheimer's to way-find. The battery consumption of several POMDP policies is compared against finite-state controllers learned using methods introduced in this paper. Experiments performed on the Nexus 4 phone show that finite-state controllers are the least battery consuming POMDP policies
    • …
    corecore