787 research outputs found

    Using Regular Languages to Explore the Representational Capacity of Recurrent Neural Architectures

    Get PDF
    The presence of Long Distance Dependencies (LDDs) in sequential data poses significant challenges for computational models. Various recurrent neural architectures have been designed to mitigate this issue. In order to test these state-of-the-art architectures, there is growing need for rich benchmarking datasets. However, one of the drawbacks of existing datasets is the lack of experimental control with regards to the presence and/or degree of LDDs. This lack of control limits the analysis of model performance in relation to the specific challenge posed by LDDs. One way to address this is to use synthetic data having the properties of subregular languages. The degree of LDDs within the generated data can be controlled through the k parameter, length of the generated strings, and by choosing appropriate forbidden strings. In this paper, we explore the capacity of different RNN extensions to model LDDs, by evaluating these models on a sequence of SPk synthesized datasets, where each subsequent dataset exhibits a longer degree of LDD. Even though SPk are simple languages, the presence of LDDs does have significant impact on the performance of recurrent neural architectures, thus making them prime candidate in benchmarking tasks.Comment: International Conference of Artificial Neural Networks (ICANN) 201

    Using Regular Languages to Explore the Representational Capacity of Recurrent Neural Architectures

    Get PDF
    The presence of Long Distance Dependencies (LDDs) in sequential data poses significant challenges for computational models. Various recurrent neural architectures have been designed to mitigate this issue. In order to test these state-of-the-art architectures, there is growing need for rich benchmarking datasets. However, one of the drawbacks of existing datasets is the lack of experimental control with regards to the presence and/or degree of LDDs. This lack of control limits the analysis of model performance in relation to the specific challenge posed by LDDs. One way to address this is to use synthetic data having the properties of subregular languages. The degree of LDDs within the generated data can be controlled through the k parameter, length of the generated strings, and by choosing appropriate forbidden strings. In this paper, we explore the capacity of different RNN extensions to model LDDs, by evaluating these models on a sequence of SPk synthesized datasets, where each subsequent dataset exhibits a longer degree of LDD. Even though SPk are simple languages, the presence of LDDs does have significant impact on the performance of recurrent neural architectures, thus making them prime candidate in benchmarking tasks. © Springer Nature Switzerland AG 2018

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF
    The dynamic response of end-clamped monolithic beams and sandwich beams has been measured by loading the beams at mid-span using metal foam projectiles. The AISI 304 stainless-steel sandwich beams comprise two identical face sheets and either prismatic Y-frame or corrugated cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the beams as a function of projectile momentum. The prismatic cores are aligned either longitudinally along the beam length or transversely. It is found that the sandwich beams with a longitudinal core orientation have a higher shock resistance than the monolithic beams of equal mass. In contrast, the performance of the sandwich beams with a transverse core orientation is very similar to that of the monolithic beams. Three-dimensional finite element (FE) simulations are in good agreement with the measured responses. The FE calculations indicate that strain concentrations in the sandwich beams occur at joints within the cores and between the core and face sheets; the level of maximum strain is similar for the Y-frame and corrugated core beams for a given value of projectile momentum. The experimental and FE results taken together reveal that Y-frame and corrugated core sandwich beams of equal mass have similar dynamic performances in terms of rear-face deflection, degree of core compression and level of strain within the beam
    corecore