12,313 research outputs found

    Transformations of High-Level Synthesis Codes for High-Performance Computing

    Full text link
    Specialized hardware architectures promise a major step in performance and energy efficiency over the traditional load/store devices currently employed in large scale computing systems. The adoption of high-level synthesis (HLS) from languages such as C/C++ and OpenCL has greatly increased programmer productivity when designing for such platforms. While this has enabled a wider audience to target specialized hardware, the optimization principles known from traditional software design are no longer sufficient to implement high-performance codes. Fast and efficient codes for reconfigurable platforms are thus still challenging to design. To alleviate this, we present a set of optimizing transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications. Our work provides a toolbox for developers, where we systematically identify classes of transformations, the characteristics of their effect on the HLS code and the resulting hardware (e.g., increases data reuse or resource consumption), and the objectives that each transformation can target (e.g., resolve interface contention, or increase parallelism). We show how these can be used to efficiently exploit pipelining, on-chip distributed fast memory, and on-chip streaming dataflow, allowing for massively parallel architectures. To quantify the effect of our transformations, we use them to optimize a set of throughput-oriented FPGA kernels, demonstrating that our enhancements are sufficient to scale up parallelism within the hardware constraints. With the transformations covered, we hope to establish a common framework for performance engineers, compiler developers, and hardware developers, to tap into the performance potential offered by specialized hardware architectures using HLS

    Modeling Global Syntactic Variation in English Using Dialect Classification

    Get PDF
    This paper evaluates global-scale dialect identification for 14 national varieties of English as a means for studying syntactic variation. The paper makes three main contributions: (i) introducing data-driven language mapping as a method for selecting the inventory of national varieties to include in the task; (ii) producing a large and dynamic set of syntactic features using grammar induction rather than focusing on a few hand-selected features such as function words; and (iii) comparing models across both web corpora and social media corpora in order to measure the robustness of syntactic variation across registers

    Tupleware: Redefining Modern Analytics

    Full text link
    There is a fundamental discrepancy between the targeted and actual users of current analytics frameworks. Most systems are designed for the data and infrastructure of the Googles and Facebooks of the world---petabytes of data distributed across large cloud deployments consisting of thousands of cheap commodity machines. Yet, the vast majority of users operate clusters ranging from a few to a few dozen nodes, analyze relatively small datasets of up to a few terabytes, and perform primarily compute-intensive operations. Targeting these users fundamentally changes the way we should build analytics systems. This paper describes the design of Tupleware, a new system specifically aimed at the challenges faced by the typical user. Tupleware's architecture brings together ideas from the database, compiler, and programming languages communities to create a powerful end-to-end solution for data analysis. We propose novel techniques that consider the data, computations, and hardware together to achieve maximum performance on a case-by-case basis. Our experimental evaluation quantifies the impact of our novel techniques and shows orders of magnitude performance improvement over alternative systems

    ret2spec: Speculative Execution Using Return Stack Buffers

    Full text link
    Speculative execution is an optimization technique that has been part of CPUs for over a decade. It predicts the outcome and target of branch instructions to avoid stalling the execution pipeline. However, until recently, the security implications of speculative code execution have not been studied. In this paper, we investigate a special type of branch predictor that is responsible for predicting return addresses. To the best of our knowledge, we are the first to study return address predictors and their consequences for the security of modern software. In our work, we show how return stack buffers (RSBs), the core unit of return address predictors, can be used to trigger misspeculations. Based on this knowledge, we propose two new attack variants using RSBs that give attackers similar capabilities as the documented Spectre attacks. We show how local attackers can gain arbitrary speculative code execution across processes, e.g., to leak passwords another user enters on a shared system. Our evaluation showed that the recent Spectre countermeasures deployed in operating systems can also cover such RSB-based cross-process attacks. Yet we then demonstrate that attackers can trigger misspeculation in JIT environments in order to leak arbitrary memory content of browser processes. Reading outside the sandboxed memory region with JIT-compiled code is still possible with 80\% accuracy on average.Comment: Updating to the cam-ready version and adding reference to the original pape
    corecore