5,504 research outputs found

    DropIn: Making Reservoir Computing Neural Networks Robust to Missing Inputs by Dropout

    Full text link
    The paper presents a novel, principled approach to train recurrent neural networks from the Reservoir Computing family that are robust to missing part of the input features at prediction time. By building on the ensembling properties of Dropout regularization, we propose a methodology, named DropIn, which efficiently trains a neural model as a committee machine of subnetworks, each capable of predicting with a subset of the original input features. We discuss the application of the DropIn methodology in the context of Reservoir Computing models and targeting applications characterized by input sources that are unreliable or prone to be disconnected, such as in pervasive wireless sensor networks and ambient intelligence. We provide an experimental assessment using real-world data from such application domains, showing how the Dropin methodology allows to maintain predictive performances comparable to those of a model without missing features, even when 20\%-50\% of the inputs are not available

    Towards Deep Learning Models for Psychological State Prediction using Smartphone Data: Challenges and Opportunities

    Get PDF
    There is an increasing interest in exploiting mobile sensing technologies and machine learning techniques for mental health monitoring and intervention. Researchers have effectively used contextual information, such as mobility, communication and mobile phone usage patterns for quantifying individuals' mood and wellbeing. In this paper, we investigate the effectiveness of neural network models for predicting users' level of stress by using the location information collected by smartphones. We characterize the mobility patterns of individuals using the GPS metrics presented in the literature and employ these metrics as input to the network. We evaluate our approach on the open-source StudentLife dataset. Moreover, we discuss the challenges and trade-offs involved in building machine learning models for digital mental health and highlight potential future work in this direction.Comment: 6 pages, 2 figures, In Proceedings of the NIPS Workshop on Machine Learning for Healthcare 2017 (ML4H 2017). Colocated with NIPS 201

    Automated Architecture Design for Deep Neural Networks

    Get PDF
    Machine learning has made tremendous progress in recent years and received large amounts of public attention. Though we are still far from designing a full artificially intelligent agent, machine learning has brought us many applications in which computers solve human learning tasks remarkably well. Much of this progress comes from a recent trend within machine learning, called deep learning. Deep learning models are responsible for many state-of-the-art applications of machine learning. Despite their success, deep learning models are hard to train, very difficult to understand, and often times so complex that training is only possible on very large GPU clusters. Lots of work has been done on enabling neural networks to learn efficiently. However, the design and architecture of such neural networks is often done manually through trial and error and expert knowledge. This thesis inspects different approaches, existing and novel, to automate the design of deep feedforward neural networks in an attempt to create less complex models with good performance that take away the burden of deciding on an architecture and make it more efficient to design and train such deep networks.Comment: Undergraduate Thesi
    • …
    corecore