104 research outputs found

    Probabilistic Spectral Sparsification In Sublinear Time

    Full text link
    In this paper, we introduce a variant of spectral sparsification, called probabilistic (ε,δ)(\varepsilon,\delta)-spectral sparsification. Roughly speaking, it preserves the cut value of any cut (S,Sc)(S,S^{c}) with an 1±ε1\pm\varepsilon multiplicative error and a δS\delta\left|S\right| additive error. We show how to produce a probabilistic (ε,δ)(\varepsilon,\delta)-spectral sparsifier with O(nlogn/ε2)O(n\log n/\varepsilon^{2}) edges in time O~(n/ε2δ)\tilde{O}(n/\varepsilon^{2}\delta) time for unweighted undirected graph. This gives fastest known sub-linear time algorithms for different cut problems on unweighted undirected graph such as - An O~(n/OPT+n3/2+t)\tilde{O}(n/OPT+n^{3/2+t}) time O(logn/t)O(\sqrt{\log n/t})-approximation algorithm for the sparsest cut problem and the balanced separator problem. - A n1+o(1)/ε4n^{1+o(1)}/\varepsilon^{4} time approximation minimum s-t cut algorithm with an εn\varepsilon n additive error

    Cuts and connectivity in graphs and hypergraphs

    Get PDF
    In this thesis, we consider cut and connectivity problems on graphs, digraphs, hypergraphs and hedgegraphs. The main results are the following: - We introduce a faster algorithm for finding the reduced graph in element-connectivity computations. We also show its application to node separation. - We present several results on hypergraph cuts, including (a) a near linear time algorithm for finding a (2+epsilon)-approximate min-cut, (b) an algorithm to find a representation of all min-cuts in the same time as finding a single min-cut, (c) a sparse subgraph that preserves connectivity for hypergraphs and (d) a near linear-time hypergraph cut sparsifier. - We design the first randomized polynomial time algorithm for the hypergraph k-cut problem whose complexity has been open for over 20 years. The algorithm generalizes to hedgegraphs with constant span. - We address the complexity gap between global vs. fixed-terminal cuts problems in digraphs by presenting a 2-1/448 approximation algorithm for the global bicut problem

    Deterministic Maximum Flows in Simple Graphs

    Get PDF
    In this paper we are interested in deterministically computing maximum flows in undirected simple graphs where edges have unit capacities. When the input graph has n vertices and m edges, and the maximum flow is known to be upper bounded by ? as prior knowledge, our algorithm has running time O?(m + n^{5/3}?^{1/2}); in the extreme case where ? = ?(n), our algorithm has running time O?(n^{2.17}). This always improves upon the previous best deterministic upper bound O?(n^{9/4}?^{1/8}) by [Duan, 2013]. Furthermore, when ? ? n^{0.67} our algorithm is faster than a classical upper bound of O(m + n?^{3/2}) by [Karger and Levin, 1998]

    Near-Optimal Approximate Shortest Paths and Transshipment in Distributed and Streaming Models

    Full text link
    We present a method for solving the transshipment problem - also known as uncapacitated minimum cost flow - up to a multiplicative error of 1+ε1 + \varepsilon in undirected graphs with non-negative edge weights using a tailored gradient descent algorithm. Using O~()\tilde{O}(\cdot) to hide polylogarithmic factors in nn (the number of nodes in the graph), our gradient descent algorithm takes O~(ε2)\tilde O(\varepsilon^{-2}) iterations, and in each iteration it solves an instance of the transshipment problem up to a multiplicative error of polylogn\operatorname{polylog} n. In particular, this allows us to perform a single iteration by computing a solution on a sparse spanner of logarithmic stretch. Using a randomized rounding scheme, we can further extend the method to finding approximate solutions for the single-source shortest paths (SSSP) problem. As a consequence, we improve upon prior work by obtaining the following results: (1) Broadcast CONGEST model: (1+ε)(1 + \varepsilon)-approximate SSSP using O~((n+D)ε3)\tilde{O}((\sqrt{n} + D)\varepsilon^{-3}) rounds, where D D is the (hop) diameter of the network. (2) Broadcast congested clique model: (1+ε)(1 + \varepsilon)-approximate transshipment and SSSP using O~(ε2)\tilde{O}(\varepsilon^{-2}) rounds. (3) Multipass streaming model: (1+ε)(1 + \varepsilon)-approximate transshipment and SSSP using O~(n)\tilde{O}(n) space and O~(ε2)\tilde{O}(\varepsilon^{-2}) passes. The previously fastest SSSP algorithms for these models leverage sparse hop sets. We bypass the hop set construction; computing a spanner is sufficient with our method. The above bounds assume non-negative edge weights that are polynomially bounded in nn; for general non-negative weights, running times scale with the logarithm of the maximum ratio between non-zero weights.Comment: Accepted to SIAM Journal on Computing. Preliminary version in DISC 2017. Abstract shortened to fit arXiv's limitation to 1920 character
    corecore