413 research outputs found

    Using RTT Variability for Adaptive Cross-Layer Approach to Multimedia Delivery in Heterogeneous Networks

    Get PDF
    A holistic approach should be made for a wider adoption of a cross-layer approach. A cross-layer design on a wireless network assumed with a certain network condition, for instance, can have a limited usage in heterogeneous environments with diverse access network technologies and time varying network performance. The first step toward a cross-layer approach is an automatic detection of the underlying access network type, so that appropriate schemes can be applied without manual configurations. To address the issue, we investigate the characteristics of round-trip time (RTT) on wireless and wired networks. We conduct extensive experiments from diverse network environments and perform quantitative analyses on RTT variability. We show that RTT variability on a wireless network exhibits greatly larger mean, standard deviation, and min-to-high percentiles at least 10 ms bigger than those of wired networks due to the MAC layer retransmissions. We also find that the impact of packet size on wireless channel is particularly significant. Thus through a simple set of testing, one can accurately classify whether or not there has been a wireless network involved. We then propose effective adaptive cross-layer schemes for multimedia delivery over error-prone links. They include limiting the MAC layer retransmissions, controlling the application layer forward error correction (FEC) level, and selecting an optimal packet size. We conduct an analysis on the interplay of those adaptive parameters given a network condition. It enables us to find optimal cross-layer adaptive parameters when they are used concurrently.IEEE Circuits & Systems Societ

    Video Streaming in Evolving Networks under Fuzzy Logic Control

    Get PDF

    QoSatAr: a cross-layer architecture for E2E QoS provisioning over DVB-S2 broadband satellite systems

    Get PDF
    This article presents QoSatAr, a cross-layer architecture developed to provide end-to-end quality of service (QoS) guarantees for Internet protocol (IP) traffic over the Digital Video Broadcasting-Second generation (DVB-S2) satellite systems. The architecture design is based on a cross-layer optimization between the physical layer and the network layer to provide QoS provisioning based on the bandwidth availability present in the DVB-S2 satellite channel. Our design is developed at the satellite-independent layers, being in compliance with the ETSI-BSM-QoS standards. The architecture is set up inside the gateway, it includes a Re-Queuing Mechanism (RQM) to enhance the goodput of the EF and AF traffic classes and an adaptive IP scheduler to guarantee the high-priority traffic classes taking into account the channel conditions affected by rain events. One of the most important aspect of the architecture design is that QoSatAr is able to guarantee the QoS requirements for specific traffic flows considering a single parameter: the bandwidth availability which is set at the physical layer (considering adaptive code and modulation adaptation) and sent to the network layer by means of a cross-layer optimization. The architecture has been evaluated using the NS-2 simulator. In this article, we present evaluation metrics, extensive simulations results and conclusions about the performance of the proposed QoSatAr when it is evaluated over a DVB-S2 satellite scenario. The key results show that the implementation of this architecture enables to keep control of the satellite system load while guaranteeing the QoS levels for the high-priority traffic classes even when bandwidth variations due to rain events are experienced. Moreover, using the RQM mechanism the user’s quality of experience is improved while keeping lower delay and jitter values for the high-priority traffic classes. In particular, the AF goodput is enhanced around 33% over the drop tail scheme (on average)

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years

    Improving video streaming experience through network measurements and analysis

    Get PDF
    Multimedia traffic dominates today’s Internet. In particular, the most prevalent traffic carried over wired and wireless networks is video. Most popular streaming providers (e.g. Netflix, Youtube) utilise HTTP adaptive streaming (HAS) for video content delivery to end-users. The power of HAS lies in the ability to change video quality in real time depending on the current state of the network (i.e. available network resources). The main goal of HAS algorithms is to maximise video quality while minimising re-buffering events and switching between different qualities. However, these requirements are opposite in nature, so striking a perfect blend is challenging, as there is no single widely accepted metric that captures user experience based on the aforementioned requirements. In recent years, researchers have put a lot of effort into designing subjectively validated metrics that can be used to map quality, re-buffering and switching behaviour of HAS players to the overall user experience (i.e. video QoE). This thesis demonstrates how data analysis can contribute in improving video QoE. One of the main characteristics of mobile networks is frequent throughput fluctuations. There are various underlying factors that contribute to this behaviour, including rapid changes in the radio channel conditions, system load and interaction between feedback loops at the different time scales. These fluctuations highlight the challenge to achieve a high video user experience. In this thesis, we tackle this issue by exploring the possibility of throughput prediction in cellular networks. The need for better throughput prediction comes from data-based evidence that standard throughput estimation techniques (e.g. exponential moving average) exhibit low prediction accuracy. Cellular networks deploy opportunistic exponential scheduling algorithms (i.e. proportional-fair) for resource allocation among mobile users/devices. These algorithms take into account a user’s physical layer information together with throughput demand. While the algorithm itself is proprietary to the manufacturer, physical layer and throughput information are exchanged between devices and base stations. Availability of this information allows for a data-driven approach for throughput prediction. This thesis utilises a machine-learning approach to predict available throughput based on measurements in the near past. As a result, a prediction accuracy with an error less than 15% in 90% of samples is achieved. Adding information from other devices served by the same base station (network-based information) further improves accuracy while lessening the need for a large history (i.e. how far to look into the past). Finally, the throughput prediction technique is incorporated to state-of-the-art HAS algorithms. The approach is validated in a commercial cellular network and on a stock mobile device. As a result, better throughput prediction helps in improving user experience up to 33%, while minimising re-buffering events by up to 85%. In contrast to wireless networks, channel characteristics of the wired medium are more stable, resulting in less prominent throughput variations. However, all traffic traverses through network queues (i.e. a router or switch), unlike in cellular networks where each user gets a dedicated queue at the base station. Furthermore, network operators usually deploy a simple first-in-first-out queuing discipline at queues. As a result, traffic can experience excessive delays due to the large queue sizes, usually deployed in order to minimise packet loss and maximise throughput. This effect, also known as bufferbloat, negatively impacts delay-sensitive applications, such as web browsing and voice. While there exist guidelines for modelling queue size, there is no work analysing its impact on video streaming traffic generated by multiple users. To answer this question, the performance of multiple videos clients sharing a bottleneck link is analysed. Moreover, the analysis is extended to a realistic case including heterogeneous round-trip-time (RTT) and traffic (i.e. web browsing). Based on experimental results, a simple two queue discipline is proposed for scheduling heterogeneous traffic by taking into account application characteristics. As a result, compared to the state-of-the-art Active Queue Management (AQM) discipline, Controlled Delay Management (CoDel), the proposed discipline decreases median Page Loading Time (PLT) of web traffic by up to 80% compared to CoDel, with no significant negative impact on video QoE
    • …
    corecore