3,088 research outputs found

    Automating property-based testing of evolving web services

    Get PDF
    Web services are the most widely used service technology that drives the Service-Oriented Computing~(SOC) paradigm. As a result, effective testing of web services is getting increasingly important. In this paper, we present a framework and toolset for testing web services and for evolving test code in sync with the evolution of web services. Our approach to testing web services is based on the Erlang programming language and QuviQ QuickCheck, a property-based testing tool written in Erlang, and our support for test code evolution is added to Wrangler, the Erlang refactoring tool. The key components of our system include the automatic generation of initial test code, the inference of web service interface changes between versions, the provision of a number of domain specific refactorings and the automatic generation of refactoring scripts for evolving the test code. Our framework provides users with a powerful and expressive web service testing framework, while minimising users' effort in creating, maintaining and evolving the test model. The framework presented in this paper can be used by both web service providers and consumers, and can be used to test web services written in whatever language; the approach advocated here could also be adopted in other property-based testing frameworks and refactoring tools

    Functional Testing Approaches for "BIFST-able" tlm_fifo

    Get PDF
    Evolution of Electronic System Level design methodologies, allows a wider use of Transaction-Level Modeling (TLM). TLM is a high-level approach to modeling digital systems that emphasizes on separating communications among modules from the details of functional units. This paper explores different functional testing approaches for the implementation of Built-in Functional Self Test facilities in the TLM primitive channel tlm_fifo. In particular, it focuses on three different test approaches based on a finite state machine model of tlm_fifo, functional fault models, and march tests respectivel

    Robust Computer Algebra, Theorem Proving, and Oracle AI

    Get PDF
    In the context of superintelligent AI systems, the term "oracle" has two meanings. One refers to modular systems queried for domain-specific tasks. Another usage, referring to a class of systems which may be useful for addressing the value alignment and AI control problems, is a superintelligent AI system that only answers questions. The aim of this manuscript is to survey contemporary research problems related to oracles which align with long-term research goals of AI safety. We examine existing question answering systems and argue that their high degree of architectural heterogeneity makes them poor candidates for rigorous analysis as oracles. On the other hand, we identify computer algebra systems (CASs) as being primitive examples of domain-specific oracles for mathematics and argue that efforts to integrate computer algebra systems with theorem provers, systems which have largely been developed independent of one another, provide a concrete set of problems related to the notion of provable safety that has emerged in the AI safety community. We review approaches to interfacing CASs with theorem provers, describe well-defined architectural deficiencies that have been identified with CASs, and suggest possible lines of research and practical software projects for scientists interested in AI safety.Comment: 15 pages, 3 figure

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    Automating test oracles generation

    Get PDF
    Software systems play a more and more important role in our everyday life. Many relevant human activities nowadays involve the execution of a piece of software. Software has to be reliable to deliver the expected behavior, and assessing the quality of software is of primary importance to reduce the risk of runtime errors. Software testing is the most common quality assessing technique for software. Testing consists in running the system under test on a finite set of inputs, and checking the correctness of the results. Thoroughly testing a software system is expensive and requires a lot of manual work to define test inputs (stimuli used to trigger different software behaviors) and test oracles (the decision procedures checking the correctness of the results). Researchers have addressed the cost of testing by proposing techniques to automatically generate test inputs. While the generation of test inputs is well supported, there is no way to generate cost-effective test oracles: Existing techniques to produce test oracles are either too expensive to be applied in practice, or produce oracles with limited effectiveness that can only identify blatant failures like system crashes. Our intuition is that cost-effective test oracles can be generated using information produced as a byproduct of the normal development activities. The goal of this thesis is to create test oracles that can detect faults leading to semantic and non-trivial errors, and that are characterized by a reasonable generation cost. We propose two ways to generate test oracles, one derives oracles from the software redundancy and the other from the natural language comments that document the source code of software systems. We present a technique that exploits redundant sequences of method calls encoding the software redundancy to automatically generate test oracles named CCOracles. We describe how CCOracles are automatically generated, deployed, and executed. We prove the effectiveness of CCOracles by measuring their fault-finding effectiveness when combined with both automatically generated and hand-written test inputs. We also present Toradocu, a technique that derives executable specifications from Javadoc comments of Java constructors and methods. From such specifications, Toradocu generates test oracles that are then deployed into existing test suites to assess the outputs of given test inputs. We empirically evaluate Toradocu, showing that Toradocu accurately translates Javadoc comments into procedure specifications. We also show that Toradocu oracles effectively identify semantic faults in the SUT. CCOracles and Toradocu oracles stem from independent information sources and are complementary in the sense that they check different aspects of the system undertest
    • …
    corecore