17 research outputs found

    Superquadric representation of scenes from multi-view range data

    Get PDF
    Object representation denotes representing three-dimensional (3D) real-world objects with known graphic or mathematic primitives recognizable to computers. This research has numerous applications for object-related tasks in areas including computer vision, computer graphics, reverse engineering, etc. Superquadrics, as volumetric and parametric models, have been selected to be the representation primitives throughout this research. Superquadrics are able to represent a large family of solid shapes by a single equation with only a few parameters. This dissertation addresses superquadric representation of multi-part objects and multiobject scenes. Two issues motivate this research. First, superquadric representation of multipart objects or multi-object scenes has been an unsolved problem due to the complex geometry of objects. Second, superquadrics recovered from single-view range data tend to have low confidence and accuracy due to partially scanned object surfaces caused by inherent occlusions. To address these two problems, this dissertation proposes a multi-view superquadric representation algorithm. By incorporating both part decomposition and multi-view range data, the proposed algorithm is able to not only represent multi-part objects or multi-object scenes, but also achieve high confidence and accuracy of recovered superquadrics. The multi-view superquadric representation algorithm consists of (i) initial superquadric model recovery from single-view range data, (ii) pairwise view registration based on recovered superquadric models, (iii) view integration, (iv) part decomposition, and (v) final superquadric fitting for each decomposed part. Within the multi-view superquadric representation framework, this dissertation proposes a 3D part decomposition algorithm to automatically decompose multi-part objects or multiobject scenes into their constituent single parts consistent with human visual perception. Superquadrics can then be recovered for each decomposed single-part object. The proposed part decomposition algorithm is based on curvature analysis, and includes (i) Gaussian curvature estimation, (ii) boundary labeling, (iii) part growing and labeling, and (iv) post-processing. In addition, this dissertation proposes an extended view registration algorithm based on superquadrics. The proposed view registration algorithm is able to handle deformable superquadrics as well as 3D unstructured data sets. For superquadric fitting, two objective functions primarily used in the literature have been comprehensively investigated with respect to noise, viewpoints, sample resolutions, etc. The objective function proved to have better performance has been used throughout this dissertation. In summary, the three algorithms (contributions) proposed in this dissertation are generic and flexible in the sense of handling triangle meshes, which are standard surface primitives in computer vision and graphics. For each proposed algorithm, the dissertation presents both theory and experimental results. The results demonstrate the efficiency of the algorithms using both synthetic and real range data of a large variety of objects and scenes. In addition, the experimental results include comparisons with previous methods from the literature. Finally, the dissertation concludes with a summary of the contributions to the state of the art in superquadric representation, and presents possible future extensions to this research

    Extraction robuste de primitives géométriques 3D dans un nuage de points et alignement basé sur les primitives

    Get PDF
    Dans ce projet, nous étudions les problèmes de rétro-ingénierie et de contrôle de la qualité qui jouent un rôle important dans la fabrication industrielle. La rétro-ingénierie tente de reconstruire un modèle 3D à partir de nuages de points, qui s’apparente au problème de la reconstruction de la surface 3D. Le contrôle de la qualité est un processus dans lequel la qualité de tous les facteurs impliqués dans la production est abordée. En fait, les systèmes ci-dessus nécessitent beaucoup d’intervention de la part d’un utilisateur expérimenté, résultat souhaité est encore loin soit une automatisation complète du processus. Par conséquent, de nombreux défis doivent encore être abordés pour atteindre ce résultat hautement souhaitable en production automatisée. La première question abordée dans la thèse consiste à extraire les primitives géométriques 3D à partir de nuages de points. Un cadre complet pour extraire plusieurs types de primitives à partir de données 3D est proposé. En particulier, une nouvelle méthode de validation est proposée pour évaluer la qualité des primitives extraites. À la fin, toutes les primitives présentes dans le nuage de points sont extraites avec les points de données associés et leurs paramètres descriptifs. Ces résultats pourraient être utilisés dans diverses applications telles que la reconstruction de scènes on d’édifices, la géométrie constructive et etc. La seconde question traiée dans ce travail porte sur l’alignement de deux ensembles de données 3D à l’aide de primitives géométriques, qui sont considérées comme un nouveau descripteur robuste. L’idée d’utiliser les primitives pour l’alignement arrive à surmonter plusieurs défis rencontrés par les méthodes d’alignement existantes. Ce problème d’alignement est une étape essentielle dans la modélisation 3D, la mise en registre, la récupération de modèles. Enfin, nous proposons également une méthode automatique pour extraire les discontinutés à partir de données 3D d’objets manufacturés. En intégrant ces discontinutés au problème d’alignement, il est possible d’établir automatiquement les correspondances entre primitives en utilisant l’appariement de graphes relationnels avec attributs. Nous avons expérimenté tous les algorithmes proposés sur différents jeux de données synthétiques et réelles. Ces algorithmes ont non seulement réussi à accomplir leur tâches avec succès mais se sont aussi avérés supérieus aux méthodes proposées dans la literature. Les résultats présentés dans le thèse pourraient s’avérér utilises à plusieurs applications.In this research project, we address reverse engineering and quality control problems that play significant roles in industrial manufacturing. Reverse engineering attempts to rebuild a 3D model from the scanned data captured from a object, which is the problem similar to 3D surface reconstruction. Quality control is a process in which the quality of all factors involved in production is monitored and revised. In fact, the above systems currently require significant intervention from experienced users, and are thus still far from being fully automated. Therefore, many challenges still need to be addressed to achieve the desired performance for automated production. The first proposition of this thesis is to extract 3D geometric primitives from point clouds for reverse engineering and surface reconstruction. A complete framework to extract multiple types of primitives from 3D data is proposed. In particular, a novel validation method is also proposed to assess the quality of the extracted primitives. At the end, all primitives present in the point cloud are extracted with their associated data points and descriptive parameters. These results could be used in various applications such as scene and building reconstruction, constructive solid geometry, etc. The second proposition of the thesis is to align two 3D datasets using the extracted geometric primitives, which is introduced as a novel and robust descriptor. The idea of using primitives for alignment is addressed several challenges faced by existing registration methods. This alignment problem is an essential step in 3D modeling, registration and model retrieval. Finally, an automatic method to extract sharp features from 3D data of man-made objects is also proposed. By integrating the extracted sharp features into the alignment framework, it is possible implement automatic assignment of primitive correspondences using attribute relational graph matching. Each primitive is considered as a node of the graph and an attribute relational graph is created to provide a structural and relational description between primitives. We have experimented all the proposed algorithms on different synthetic and real scanned datasets. Our algorithms not only are successful in completing their tasks with good results but also outperform other methods. We believe that the contribution of them could be useful in many applications

    Part decomposition of 3D surfaces

    Get PDF
    This dissertation describes a general algorithm that automatically decomposes realworld scenes and objects into visual parts. The input to the algorithm is a 3 D triangle mesh that approximates the surfaces of a scene or object. This geometric mesh completely specifies the shape of interest. The output of the algorithm is a set of boundary contours that dissect the mesh into parts where these parts agree with human perception. In this algorithm, shape alone defines the location of a bom1dary contour for a part. The algorithm leverages a human vision theory known as the minima rule that states that human visual perception tends to decompose shapes into parts along lines of negative curvature minima. Specifically, the minima rule governs the location of part boundaries, and as a result the algorithm is known as the Minima Rule Algorithm. Previous computer vision methods have attempted to implement this rule but have used pseudo measures of surface curvature. Thus, these prior methods are not true implementations of the rule. The Minima Rule Algorithm is a three step process that consists of curvature estimation, mesh segmentation, and quality evaluation. These steps have led to three novel algorithms known as Normal Vector Voting, Fast Marching Watersheds, and Part Saliency Metric, respectively. For each algorithm, this dissertation presents both the supporting theory and experimental results. The results demonstrate the effectiveness of the algorithm using both synthetic and real data and include comparisons with previous methods from the research literature. Finally, the dissertation concludes with a summary of the contributions to the state of the art

    Realistic Hair Simulation: Animation and Rendering

    Get PDF
    International audienceThe last five years have seen a profusion of innovative solutions to one of the most challenging tasks in character synthesis: hair simulation. This class covers both recent and novel research ideas in hair animation and rendering, and presents time tested industrial practices that resulted in spectacular imagery

    Reconstruction and recognition of confusable models using three-dimensional perception

    Get PDF
    Perception is one of the key topics in robotics research. It is about the processing of external sensor data and its interpretation. The necessity of fully autonomous robots makes it crucial to help them to perform tasks more reliably, flexibly, and efficiently. As these platforms obtain more refined manipulation capabilities, they also require expressive and comprehensive environment models: for manipulation and affordance purposes, their models have to involve each one of the objects present in the world, coincidentally with their location, pose, shape and other aspects. The aim of this dissertation is to provide a solution to several of these challenges that arise when meeting the object grasping problem, with the aim of improving the autonomy of the mobile manipulator robot MANFRED-2. By the analysis and interpretation of 3D perception, this thesis covers in the first place the localization of supporting planes in the scenario. As the environment will contain many other things apart from the planar surface, the problem within cluttered scenarios has been solved by means of Differential Evolution, which is a particlebased evolutionary algorithm that evolves in time to the solution that yields the cost function lowest value. Since the final purpose of this thesis is to provide with valuable information for grasping applications, a complete model reconstructor has been developed. The proposed method holdsmany features such as robustness against abrupt rotations, multi-dimensional optimization, feature extensibility, compatible with other scan matching techniques, management of uncertain information and an initialization process to reduce convergence timings. It has been designed using a evolutionarybased scan matching optimizer that takes into account surface features of the object, global form and also texture and color information. The last tackled challenge regards the recognition problem. In order to procure with worthy information about the environment to the robot, a meta classifier that discerns efficiently the observed objects has been implemented. It is capable of distinguishing between confusable objects, such as mugs or dishes with similar shapes but different size or color. The contributions presented in this thesis have been fully implemented and empirically evaluated in the platform. A continuous grasping pipeline covering from perception to grasp planning including visual object recognition for confusable objects has been developed. For that purpose, an indoor environment with several objects on a table is presented in the nearby of the robot. Items are recognized from a database and, if one is chosen, the robot will calculate how to grasp it taking into account the kinematic restrictions associated to the anthropomorphic hand and the 3D model for this particular object. -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------La percepción es uno de los temas más relevantes en el mundo de la investigaci ón en robótica. Su objetivo es procesar e interpretar los datos recibidos por un sensor externo. La gran necesidad de desarrollar robots autónomos hace imprescindible proporcionar soluciones que les permita realizar tareas más precisas, flexibles y eficientes. Dado que estas plataformas cada día adquieren mejores capacidades para manipular objetos, también necesitarán modelos expresivos y comprensivos: para realizar tareas de manipulación y prensión, sus modelos han de tener en cuenta cada uno de los objetos presentes en su entorno, junto con su localizaci ón, orientación, forma y otros aspectos. El objeto de la presente tesis doctoral es proponer soluciones a varios de los retos que surgen al enfrentarse al problema del agarre, con el propósito final de aumentar la capacidad de autonomía del robot manipulador MANFRED-2. Mediante el análisis e interpretación de la percepción tridimensional, esta tesis cubre en primer lugar la localización de planos de soporte en sus alrededores. Dado que el entorno contendrá muchos otros elementos aparte de la superficie de apoyo buscada, el problema en entornos abarrotados ha sido solucionado mediante Evolución Diferencial, que es un algoritmo evolutivo basado en partículas que evoluciona temporalmente a la solución que contempla el menor resultado en la función de coste. Puesto que el propósito final de este trabajo de investigación es proveer de información valiosa a las aplicaciones de prensión, se ha desarrollado un reconstructor de modelos completos. El método propuesto posee diferentes características como robustez a giros abruptos, optimización multidimensional, extensión a otras características, compatibilidad con otras técnicas de reconstrucción, manejo de incertidumbres y un proceso de inicialización para reducir el tiempo de convergencia. Ha sido diseñado usando un registro optimizado mediante técnicas evolutivas que tienen en cuenta las particularidades de la superficie del objeto, su forma global y la información relativa a la textura. El último problema abordado está relacionado con el reconocimiento de objetos. Con la intención de abastecer al robot con la mayor información posible sobre el entorno, se ha implementado un meta clasificador que diferencia de manera eficaz los objetos observados. Ha sido capacitado para distinguir objetos confundibles como tazas o platos con formas similares pero con diferentes colores o tamaños. Las contribuciones presentes en esta tesis han sido completamente implementadas y probadas de manera empírica en la plataforma. Se ha desarrollado un sistema que cubre el problema de agarre desde la percepción al cálculo de la trayectoria incluyendo el sistema de reconocimiento de objetos confundibles. Para ello, se ha presentado una mesa con objetos en un entorno cerrado cercano al robot. Los elementos son comparados con una base de datos y si se desea agarrar uno de ellos, el robot estimará cómo cogerlo teniendo en cuenta las restricciones cinemáticas asociadas a una mano antropomórfica y el modelo tridimensional generado del objeto en cuestión
    corecore