1,096 research outputs found

    The Internet of Things

    Get PDF
    The Internet of Things (IoT) is the next evolution in Internet technology—creating a more dynamic and integrated entity that connects virtual and physical worlds in highly unified and increasingly useful ways. The IoT takes advantage of radio-frequency identification (RFID) and sensor technology to integrate extensively with our physical environment. The world is currently poised to experience widespread use of this potentially disruptive technology which employs radio tags to uniquely identify and create computerized inventories of all objects and persons. With the information that the IoT makes available on real-world objects, the world will become even more highly connected than it already is by connecting and facilitating human-to-human (H2H), human-to-thing (H2T), and thing-to-thing (T2T)--also referred to as machine-to-machine (M2M)—interactions. The purpose of this research project is to conduct a review of the IoT as it pertains to individuals and businesses, and to perform an exploratory study that focuses on individual perceptions and level of awareness relating to this technological revolution. The project’s scope includes 1) a thorough literature review to define the IoT as it is currently understood and to discuss its potential as a disruptive technology with societal implications, and 2) a discussion of information ethics as it pertains to innovative and disruptive technologies. The latter part of the project presents and discusses the results of a survey of college students designed to explore their perceptions of the IoT with regards to the constructs of convenience, privacy, security, and trust surrounding this new technology. College students were selected as the focus of the survey as they will directly experience this technological revolution in full force as it continues to rapidly develop while today’s students begin to take on greater responsibility as tomorrow’s leaders in business and society

    Mobile Technology Deployment Strategies for Improving the Quality of Healthcare

    Get PDF
    Ineffective deployment of mobile technology jeopardizes healthcare quality, cost control, and access, resulting in healthcare organizations losing customers and revenue. A multiple case study was conducted to explore the strategies that chief information officers (CIOs) used for the effective deployment of mobile technology in healthcare organizations. The study population consisted of 3 healthcare CIOs and 2 healthcare information technology consultants who have experience in deploying mobile technology in a healthcare organization in the United States. The conceptual framework that grounded the study was Wallace and Iyer\u27s health information technology value hierarchy. Data were collected using semistructured interviews and document reviews, followed by within-case and cross-case analyses for triangulation and data saturation. Key themes that emerged from data analysis included the application of disruptive technology in healthcare, ownership and management of mobile health equipment, and cybersecurity. The healthcare CIOs and consultants emphasized their concern about the lack of cybersecurity in mobile technology. CIOs were reluctant to deploy the bring-your-own-device strategy in their organizations. The implications of this study for positive social change include the potential for healthcare CIOs to emphasize the business practice of supporting healthcare providers in using secure mobile equipment deployment strategies to provide enhanced care, safety, peace of mind, convenience, and ease of access to patients while controlling costs

    Holistic System Design for Distributed National eHealth Services

    Get PDF
    publishedVersio

    Validation of design artefacts for blockchain-enabled precision healthcare as a service.

    Get PDF
    Healthcare systems around the globe are currently experiencing a rapid wave of digital disruption. Current research in applying emerging technologies such as Big Data (BD), Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL), Augmented Reality (AR), Virtual Reality (VR), Digital Twin (DT), Wearable Sensor (WS), Blockchain (BC) and Smart Contracts (SC) in contact tracing, tracking, drug discovery, care support and delivery, vaccine distribution, management, and delivery. These disruptive innovations have made it feasible for the healthcare industry to provide personalised digital health solutions and services to the people and ensure sustainability in healthcare. Precision Healthcare (PHC) is a new inclusion in digital healthcare that can support personalised needs. It focuses on supporting and providing precise healthcare delivery. Despite such potential, recent studies show that PHC is ineffectual due to the lower patient adoption in the system. Anecdotal evidence shows that people are refraining from adopting PHC due to distrust. This thesis presents a BC-enabled PHC ecosystem that addresses ongoing issues and challenges regarding low opt-in. The designed ecosystem also incorporates emerging information technologies that are potential to address the need for user-centricity, data privacy and security, accountability, transparency, interoperability, and scalability for a sustainable PHC ecosystem. The research adopts Soft System Methodology (SSM) to construct and validate the design artefact and sub-artefacts of the proposed PHC ecosystem that addresses the low opt-in problem. Following a comprehensive view of the scholarly literature, which resulted in a draft set of design principles and rules, eighteen design refinement interviews were conducted to develop the artefact and sub-artefacts for design specifications. The artefact and sub-artefacts were validated through a design validation workshop, where the designed ecosystem was presented to a Delphi panel of twenty-two health industry actors. The key research finding was that there is a need for data-driven, secure, transparent, scalable, individualised healthcare services to achieve sustainability in healthcare. It includes explainable AI, data standards for biosensor devices, affordable BC solutions for storage, privacy and security policy, interoperability, and usercentricity, which prompts further research and industry application. The proposed ecosystem is potentially effective in growing trust, influencing patients in active engagement with real-world implementation, and contributing to sustainability in healthcare

    Participative Urban Health and Healthy Aging in the Age of AI

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2022, held in Paris, France, in June 2022. The 15 full papers and 10 short papers presented in this volume were carefully reviewed and selected from 33 submissions. They cover topics such as design, development, deployment, and evaluation of AI for health, smart urban environments, assistive technologies, chronic disease management, and coaching and health telematics systems

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial
    corecore