34,504 research outputs found

    Microscopic mechanisms of magnetization reversal

    Full text link
    Two principal scenarios of magnetization reversal are considered. In the first scenario all spins perform coherent motion and an excess of magnetic energy directly goes to a nonmagnetic thermal bath. A general dynamic equation is derived which includes a tensor damping term similar to the Bloch-Bloembergen form but the magnetization magnitude remains constant for any deviation from equilibrium. In the second reversal scenario, the absolute value of the averaged sample magnetization is decreased by a rapid excitation of nonlinear spin-wave resonances by uniform magnetization precession. We have developed an analytic k-space micromagnetic approach that describes this entire reversal process in an ultra-thin soft ferromagnetic film for up to 90^{o} deviation from equilibrium. Conditions for the occurrence of the two scenarios are discussed

    Active mechanics reveal molecular-scale force kinetics in living oocytes

    Full text link
    Active diffusion of intracellular components is emerging as an important process in cell biology. This process is mediated by complex assemblies of molecular motors and cytoskeletal filaments that drive force generation in the cytoplasm and facilitate enhanced motion. The kinetics of molecular motors have been precisely characterized in-vitro by single molecule approaches, however, their in-vivo behavior remains elusive. Here, we study the active diffusion of vesicles in mouse oocytes, where this process plays a key role in nuclear positioning during development, and combine an experimental and theoretical framework to extract molecular-scale force kinetics (force, power-stroke, and velocity) of the in-vivo active process. Assuming a single dominant process, we find that the nonequilibrium activity induces rapid kicks of duration τ∼\tau \sim 300 μ\mus resulting in an average force of F∼F \sim 0.4 pN on vesicles in in-vivo oocytes, remarkably similar to the kinetics of in-vitro myosin-V. Our results reveal that measuring in-vivo active fluctuations allows extraction of the molecular-scale activity in agreement with single-molecule studies and demonstrates a mesoscopic framework to access force kinetics.Comment: 20 pages, 4 figures, see ancillary files for Supplementary Materials, * equally contributing author

    Nonlinear mechanisms in passive microwave devices

    Get PDF
    Premi extraordinari doctorat curs 2010-2011, àmbit d’Enginyeria de les TICThe telecommunications industry follows a tendency towards smaller devices, higher power and higher frequency, which imply an increase on the complexity of the electronics involved. Moreover, there is a need for extended capabilities like frequency tunable devices, ultra-low losses or high power handling, which make use of advanced materials for these purposes. In addition, increasingly demanding communication standards and regulations push the limits of the acceptable performance degrading indicators. This is the case of nonlinearities, whose effects, like increased Adjacent Channel Power Ratio (ACPR), harmonics, or intermodulation distortion among others, are being included in the performance requirements, as maximum tolerable levels. In this context, proper modeling of the devices at the design stage is of crucial importance in predicting not only the device performance but also the global system indicators and to make sure that the requirements are fulfilled. In accordance with that, this work proposes the necessary steps for circuit models implementation of different passive microwave devices, from the linear and nonlinear measurements to the simulations to validate them. Bulk acoustic wave resonators and transmission lines made of high temperature superconductors, ferroelectrics or regular metals and dielectrics are the subject of this work. Both phenomenological and physical approaches are considered and circuit models are proposed and compared with measurements. The nonlinear observables, being harmonics, intermodulation distortion, and saturation or detuning, are properly related to the material properties that originate them. The obtained models can be used in circuit simulators to predict the performance of these microwave devices under complex modulated signals, or even be used to predict their performance when integrated into more complex systems. A key step to achieve this goal is an accurate characterization of materials and devices, which is faced by making use of advanced measurement techniques. Therefore, considerations on special measurement setups are being made along this thesis.Award-winningPostprint (published version

    Dynamical strategies for obstacle avoidance during Dictyostelium discoideum aggregation: a Multi-agent system model

    Get PDF
    Chemotaxis, the movement of an organism in response to chemical stimuli, is a typical feature of many microbiological systems. In particular, the social amoeba \textit{Disctyostelium discoideum} is widely used as a model organism, but it is not still clear how it behaves in heterogeneous environments. A few models focusing on mechanical features have already addressed the question; however, we suggest that phenomenological models focusing on the population dynamics may provide new meaningful data. Consequently, by means of a specific Multi-agent system model, we study the dynamical features emerging from complex social interactions among individuals belonging to amoeba colonies.\\ After defining an appropriate metric to quantitatively estimate the gathering process, we find that: a) obstacles play the role of local topological perturbation, as they alter the flux of chemical signals; b) physical obstacles (blocking the cellular motion and the chemical flux) and purely chemical obstacles (only interfering with chemical flux) elicit similar dynamical behaviors; c) a minimal program for robustly gathering simulated cells does not involve mechanisms for obstacle sensing and avoidance; d) fluctuations of the dynamics concur in preventing multiple stable clusters. Comparing those findings with previous results, we speculate about the fact that chemotactic cells can avoid obstacles by simply following the altered chemical gradient. Social interactions are sufficient to guarantee the aggregation of the whole colony past numerous obstacles

    Viscoplasticity: A thermodynamic formulation

    Get PDF
    A thermodynamic foundation using the concept of internal state variables is given for a general theory of viscoplasticity, as it applies to initially isotropic materials. Three fundamental internal state variables are admitted. They are: a tensor valued back stress for kinematic effects, and the scalar valued drag and yield strengths for isotropic effects. All three are considered to phenomenologically evolve according to competitive processes between strain hardening, strain induced dynamic recovery, and time induced static recovery. Within this phenomenological framework, a thermodynamically admissible set of evolution equations is put forth. This theory allows each of the three fundamental internal variables to be composed as a sum of independently evolving constituents

    Core-Core Dynamics in Spin Vortex Pairs

    Full text link
    We investigate magnetic nano-pillars, in which two thin ferromagnetic nanoparticles are separated by a nanometer thin nonmagnetic spacer and can be set into stable spin vortex-pair configurations. The 16 ground states of the vortex-pair system are characterized by parallel or antiparallel chirality and parallel or antiparallel core-core alignment. We detect and differentiate these individual vortex-pair states experimentally and analyze their dynamics analytically and numerically. Of particular interest is the limit of strong core-core coupling, which we find can dominate the spin dynamics in the system. We observe that the 0.2 GHz gyrational resonance modes of the individual vortices are replaced with 2-6 GHz range collective rotational and vibrational core-core resonances in the configurations where the cores form a bound pair. These results demonstrate new opportunities in producing and manipulating spin states on the nanoscale and may prove useful for new types of ultra-dense storage devices where the information is stored as multiple vortex-core configurations

    Cytoskeleton and Cell Motility

    Full text link
    The present article is an invited contribution to the Encyclopedia of Complexity and System Science, Robert A. Meyers Ed., Springer New York (2009). It is a review of the biophysical mechanisms that underly cell motility. It mainly focuses on the eukaryotic cytoskeleton and cell-motility mechanisms. Bacterial motility as well as the composition of the prokaryotic cytoskeleton is only briefly mentioned. The article is organized as follows. In Section III, I first present an overview of the diversity of cellular motility mechanisms, which might at first glance be categorized into two different types of behaviors, namely "swimming" and "crawling". Intracellular transport, mitosis - or cell division - as well as other extensions of cell motility that rely on the same essential machinery are briefly sketched. In Section IV, I introduce the molecular machinery that underlies cell motility - the cytoskeleton - as well as its interactions with the external environment of the cell and its main regulatory pathways. Sections IV D to IV F are more detailed in their biochemical presentations; readers primarily interested in the theoretical modeling of cell motility might want to skip these sections in a first reading. I then describe the motility mechanisms that rely essentially on polymerization-depolymerization dynamics of cytoskeleton filaments in Section V, and the ones that rely essentially on the activity of motor proteins in Section VI. Finally, Section VII is devoted to the description of the integrated approaches that have been developed recently to try to understand the cooperative phenomena that underly self-organization of the cell cytoskeleton as a whole.Comment: 31 pages, 16 figures, 295 reference
    • …
    corecore