31 research outputs found

    Similarity-Aware Spectral Sparsification by Edge Filtering

    Full text link
    In recent years, spectral graph sparsification techniques that can compute ultra-sparse graph proxies have been extensively studied for accelerating various numerical and graph-related applications. Prior nearly-linear-time spectral sparsification methods first extract low-stretch spanning tree from the original graph to form the backbone of the sparsifier, and then recover small portions of spectrally-critical off-tree edges to the spanning tree to significantly improve the approximation quality. However, it is not clear how many off-tree edges should be recovered for achieving a desired spectral similarity level within the sparsifier. Motivated by recent graph signal processing techniques, this paper proposes a similarity-aware spectral graph sparsification framework that leverages efficient spectral off-tree edge embedding and filtering schemes to construct spectral sparsifiers with guaranteed spectral similarity (relative condition number) level. An iterative graph densification scheme is introduced to facilitate efficient and effective filtering of off-tree edges for highly ill-conditioned problems. The proposed method has been validated using various kinds of graphs obtained from public domain sparse matrix collections relevant to VLSI CAD, finite element analysis, as well as social and data networks frequently studied in many machine learning and data mining applications

    Distributed algorithms for low stretch spanning trees

    Get PDF
    Given an undirected graph with integer edge lengths, we study the problem of approximating the distances in the graph by a spanning tree based on the notion of stretch. Our main contribution is a distributed algorithm in the CONGEST model of computation that constructs a random spanning tree with the guarantee that the expected stretch of every edge is O(log3 n), where n is the number of nodes in the graph. If the graph is unweighted, then this algorithm can be implemented to run in O(D) rounds, where D is the hop-diameter of the graph, thus being asymptotically optimal. In the weighted case, the run-time of our algorithm matches the currently best known bound for exact distance computations, i.e., Õ(min{√nD, √nD1/4 + n3/5 + D}). We stress that this is the first distributed construction of spanning trees leading to poly-logarithmic expected stretch with non-trivial running time

    Implicit Decomposition for Write-Efficient Connectivity Algorithms

    Full text link
    The future of main memory appears to lie in the direction of new technologies that provide strong capacity-to-performance ratios, but have write operations that are much more expensive than reads in terms of latency, bandwidth, and energy. Motivated by this trend, we propose sequential and parallel algorithms to solve graph connectivity problems using significantly fewer writes than conventional algorithms. Our primary algorithmic tool is the construction of an o(n)o(n)-sized "implicit decomposition" of a bounded-degree graph GG on nn nodes, which combined with read-only access to GG enables fast answers to connectivity and biconnectivity queries on GG. The construction breaks the linear-write "barrier", resulting in costs that are asymptotically lower than conventional algorithms while adding only a modest cost to querying time. For general non-sparse graphs on mm edges, we also provide the first o(m)o(m) writes and O(m)O(m) operations parallel algorithms for connectivity and biconnectivity. These algorithms provide insight into how applications can efficiently process computations on large graphs in systems with read-write asymmetry
    corecore