90 research outputs found

    A Study On API Security Pentesting

    Get PDF
    Application Programming Interfaces (APIs) are essential in the digital realm as the bridge enabling seamless communication and collaboration between diverse software applications. Their significance lies in simplifying the integration of different systems, allowing them to work together effortlessly and share data. APIs are used in various applications, for example, healthcare, banks, authentication, etc. Ensuring the security of APIs is critical to ensure data security, privacy, and more. Therefore, the security of APIs is not only urgent but mandatory for pentesting APIs at every stage of development and to catch vulnerabilities early. The primary purpose of this research is to provide guidelines to help apply existing tools for reconnaissance and authentication pentesting. To achieve this goal, we first introduce the basics of API and OWASP\u27s Top 10 API security vulnerabilities. Secondly, we propose deployable scripts developed for Ubuntu Debian Systems to install pentesting tools automatically. These scripts allow future students to participate in API security courses and conduct API security pentesting. API security pentesting, regarding reconnaissance and authentication, is discussed based on the configured system. For reconnaissance, passive and active approaches are introduced with different tools for authentication, including password-based authentication brute-forcing, one-time password (OTP) brute-forcing, and JSON web token brute force

    Standards and practices necessary to implement a successful security review program for intrusion management systems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2002Includes bibliographical references (leaves: 84-85)Text in English; Abstract: Turkish and Englishviii, 91 leavesIntrusion Management Systems are being used to prevent the information systems from successful intrusions and their consequences. They also have detection features. They try to detect intrusions, which have passed the implemented measures. Also the recovery of the system after a successful intrusion is made by the Intrusion Management Systems. The investigation of the intrusion is made by Intrusion Management Systems also. These functions can be existent in an intrusion management system model, which has a four layers architecture. The layers of the model are avoidance, assurance, detection and recovery. At the avoidance layer necessary policies, standards and practices are implemented to prevent the information system from successful intrusions. At the avoidance layer, the effectiveness of implemented measures are measured by some test and reviews. At the detection layer the identification of an intrusion or intrusion attempt is made in the real time. The recovery layer is responsible from restoring the information system after a successful intrusion. It has also functions to investigate the intrusion. Intrusion Management Systems are used to protect information and computer assets from intrusions. An organization aiming to protect its assets must use such a system. After the implementation of the system, continuous reviews must be conducted in order to ensure the effectiveness of the measures taken. Such a review can achieve its goal by using principles and standards. In this thesis, the principles necessary to implement a successful review program for Intrusion Management Systems have been developed in the guidance of Generally Accepted System Security Principles (GASSP). These example principles are developed for tools of each Intrusion Management System layer. These tools are firewalls for avoidance layer, vulnerability scanners for assurance layer, intrusion detection systems for detection layer and integrity checkers for recovery layer of Intrusion Management Systems

    On the Detection Capabilities of Signature-Based Intrusion Detection Systems in the Context of Web Attacks

    Get PDF
    Signature-based Intrusion Detection Systems (SIDS) play a crucial role within the arsenal of security components of most organizations. They can find traces of known attacks in the network traffic or host events for which patterns or signatures have been pre-established. SIDS include standard packages of detection rulesets, but only those rules suited to the operational environment should be activated for optimal performance. However, some organizations might skip this tuning process and instead activate default off-the-shelf rulesets without understanding its implications and trade-offs. In this work, we help gain insight into the consequences of using predefined rulesets in the performance of SIDS. We experimentally explore the performance of three SIDS in the context of web attacks. In particular, we gauge the detection rate obtained with predefined subsets of rules for Snort, ModSecurity and Nemesida using seven attack datasets. We also determine the precision and rate of alert generated by each detector in a real-life case using a large trace from a public webserver. Results show that the maximum detection rate achieved by the SIDS under test is insufficient to protect systems effectively and is lower than expected for known attacks. Our results also indicate that the choice of predefined settings activated on each detector strongly influences its detection capability and false alarm rate. Snort and ModSecurity scored either a very poor detection rate (activating the less-sensitive predefined ruleset) or a very poor precision (activating the full ruleset). We also found that using various SIDS for a cooperative decision can improve the precision or the detection rate, but not both. Consequently, it is necessary to reflect upon the role of these open-source SIDS with default configurations as core elements for protection in the context of web attacks. Finally, we provide an efficient method for systematically determining which rules deactivate from a ruleset to significantly reduce the false alarm rate for a target operational environment. We tested our approach using Snort’s ruleset in our real-life trace, increasing the precision from 0.015 to 1 in less than 16 h of work. View Full-TextMinisterio de Ciencias e Innovación (MICINN)/AEI 10.13039/501100011033: PID2020-115199RB-I00FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades PYC20-RE-087-US

    On the Detection Capabilities of Signature-Based Intrusion Detection Systems in the Context of Web Attacks

    Get PDF
    This work has been partly funded by the research grant PID2020-115199RB-I00 provided by the Spanish ministry of Industry under the contract MICIN/AEI/10.13039/501100011033, and also by FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades under project PYC20-RE-087-USE.Signature-based Intrusion Detection Systems (SIDS) play a crucial role within the arsenal of security components of most organizations. They can find traces of known attacks in the network traffic or host events for which patterns or signatures have been pre-established. SIDS include standard packages of detection rulesets, but only those rules suited to the operational environment should be activated for optimal performance. However, some organizations might skip this tuning process and instead activate default off-the-shelf rulesets without understanding its implications and trade-offs. In this work, we help gain insight into the consequences of using predefined rulesets in the performance of SIDS. We experimentally explore the performance of three SIDS in the context of web attacks. In particular, we gauge the detection rate obtained with predefined subsets of rules for Snort, ModSecurity and Nemesida using seven attack datasets. We also determine the precision and rate of alert generated by each detector in a real-life case using a large trace from a public webserver. Results show that the maximum detection rate achieved by the SIDS under test is insufficient to protect systems effectively and is lower than expected for known attacks. Our results also indicate that the choice of predefined settings activated on each detector strongly influences its detection capability and false alarm rate. Snort and ModSecurity scored either a very poor detection rate (activating the less-sensitive predefined ruleset) or a very poor precision (activating the full ruleset). We also found that using various SIDS for a cooperative decision can improve the precision or the detection rate, but not both. Consequently, it is necessary to reflect upon the role of these open-source SIDS with default configurations as core elements for protection in the context of web attacks. Finally, we provide an efficient method for systematically determining which rules deactivate from a ruleset to significantly reduce the false alarm rate for a target operational environment. We tested our approach using Snort’s ruleset in our real-life trace, increasing the precision from 0.015 to 1 in less than 16 h of work.Spanish Government PID2020-115199RB-I00 MICIN/AEI/10.13039/501100011033FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades PYC20-RE-087-US

    SYSTEMATIC DISCOVERY OF ANDROID CUSTOMIZATION HAZARDS

    Get PDF
    The open nature of Android ecosystem has naturally laid the foundation for a highly fragmented operating system. In fact, the official AOSP versions have been aggressively customized into thousands of system images by everyone in the customization chain, such as device manufacturers, vendors, carriers, etc. If not well thought-out, the customization process could result in serious security problems. This dissertation performs a systematic investigation of Android customization’ inconsistencies with regards to security aspects at various Android layers. It brings to light new vulnerabilities, never investigated before, caused by the under-regulated and complex Android customization. It first describes a novel vulnerability Hare and proves that it is security critical and extensive affecting devices from major vendors. A new tool is proposed to detect the Hare problem and to protect affected devices. This dissertation further discovers security configuration changes through a systematic differential analysis among custom devices from different vendors and demonstrates that they could lead to severe vulnerabilities if introduced unintentionally

    Microsoft Defender Will Be Defended: Memoryranger Prevents Blinding Windows Av

    Get PDF
    Windows OS is facing a huge rise in kernel attacks. An overview of popular techniques that result in loading kernel drivers will be presented. One of the key targets of modern threats is disabling and blinding Microsoft Defender, a default Windows AV. The analysis of recent driver-based attacks will be given, the challenge is to block them. The survey of user- and kernel-level attacks on Microsoft Defender will be given. One of the recently published attackers’ techniques abuses Mandatory Integrity Control (MIC) and Security Reference Monitor (SRM) by modifying Integrity Level and Debug Privileges for the Microsoft Defender via syscalls. However, this user-mode attack can be blocked via the Windows “trust labels” mechanism. The presented paper discovered the internals of MIC and SRM, including the analysis of Microsoft Defender during malware detection. We show how attackers can attack Microsoft Defender using a kernel-mode driver. This driver modifies the fields of the Token structure allocated for the Microsoft Defender application. The presented attack resulted in disabling Microsoft Defender, without terminating any of its processes and without triggering any Windows security features, such as PatchGuard. The customized hypervisor-based solution named MemoryRanger was used to protect the Windows Defender kernel structures. The experiments show that MemoryRanger successfully restricts access to the sensitive kernel data from illegal access attempts with affordable performance degradation

    Evaluation of the open source HELK SIEM through a series of simulated attacks

    Get PDF
    Η αναζήτηση απειλών είναι μια αναδυόμενη τάση στον τομέα της ασφάλειας στον κυβερνοχώρο, αποτελώντας έναν πρόσθετο ενισχυτικό παράγοντα αναφορικά με την αποτελεσματική αντιμετώπιση περιστατικών ασφάλειας.. Ένα από τα εργαλεία που χρησιμοποιούνται στο κυνήγι απειλών είναι τα SIEM. Σε αυτή τη διατριβή, αξιολογούμε τις δυνατότητες ανίχνευσης του λογισμικού SIEM ανοιχτού κώδικα HELK. Επιπλέον, ελέγχουμε εάν το HELK βοηθά έναν κυνηγό απειλών. Το HELK έχει δοκιμαστεί στον αποτελεσματικό εντοπισμό διαφόρων επιθέσεων και διαφορετικών κακόβουλων λογισμικών σε υπολογιστές-θύματα.. Η μεθοδολογία επίθεσης που χρησιμοποιείται βασίζεται σε επίσημες οδηγίες για έλεγχο παρεισφρήσεων (penetration testing). Η παρούσα μελέτη καταδεικνύει ότι το HELK εντοπίζει τις περισσότερες από τις επιθέσεις του αντιπάλου. Αν και η χρήση αυτού του προγράμματος εμφανίζει πολλά πλεονεκτήματα, υπάρχει μεγάλος αριθμός μειονεκτημάτων σε σύγκριση με αντίστοιχες λύσεις που διατίθενται επί πληρωμή. Το κύριο συμπέρασμα αυτής της διατριβής είναι ότι αυτό το εργαλείο είναι εξαιρετικό για ερευνητικούς σκοπούς και ως αφετηρία για την εξερεύνηση των SIEM αλλά ενδεχομένως να μην συνιστάται για χρήση του σε παραγωγικά περιβάλλοντα.Threat hunting is an emerging trend in the cyber security domain, being a proactive additional supplement to enhance incident response methods. One of the tools used in threat hunting is SIEM. In this thesis, we evaluate the detection capabilities of the open source HELK SIEM. Furthermore, we check if HELK assists a threat hunter. HELK is tested in effectively detecting various attacks and different malware injections against victim PCs. The attack methodology used is based on official penetration testing guidelines. Our study indicates that HELK detects most of the adversary’s attacks. Although the use of this software displays many benefits, there is a great number of disadvantages in comparison to paid solutions. The main conclusion of this thesis is that this tool is great for research purposes and as a starting point in exploring SIEMs but it seems that, it might not be the optimum solution for production environments

    Web application penetration testing: an analysis of a corporate application according to OWASP guidelines

    Get PDF
    During the past decade, web applications have become the most prevalent way for service delivery over the Internet. As they get deeply embedded in business activities and required to support sophisticated functionalities, the design and implementation are becoming more and more complicated. The increasing popularity and complexity make web applications a primary target for hackers on the Internet. According to Internet Live Stats up to February 2019, there is an enormous amount of websites being attacked every day, causing both direct and significant impact on huge amount of people. Even with support from security specialist, they continue having troubles due to the complexity of penetration procedures and the vast amount of testing case in both penetration testing and code reviewing. As a result, the number of hacked websites per day is increasing. The goal of this thesis is to summarize the most common and critical vulnerabilities that can be found in a web application, provide a detailed description of them, how they could be exploited and how a cybersecurity tester can find them through the process of penetration testing. To better understand the concepts exposed, there will be also a description of a case of study: a penetration test performed over a company's web application

    Cybersecurity analysis of a SCADA system under current standards, client requisites, and penetration testing

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) systems are essential for monitoring and controlling a country's Critical Infrastructures (CI) such as electrical power grids, gas, water supply, and transportation services. These systems used to be mostly isolated and secure, but this is no longer true due to the use of wider and interconnected communication networks to reap benefits such as scalability, reliability, usability, and integration. This architectural change together with the critical importance of these systems made them desirable cyber-attack targets. Just as in other Information Technology (IT) systems, standards and best practices have been developed to provide guidance for SCADA developers to increase the security of their systems against cyber-attacks.With the assistance of EFACEC, this work provides an analysis of a SCADA system under current standards, client requisites, and testing of vulnerabilities in an actual prototype system. Our aim is to provide guidance by example on how to evaluate and improve the security of SCADA systems, using a basic prototype of EFACEC's ScateX# SCADA system, following both a theoretical and practical approach. For the theoretical approach, a list of the most commonly adopted ICS (Industrial Control Systems) and IT standards is compiled, and then sets of a generic client's cybersecurity requisites are analyzed and confronted with the prototype's specifications. A study of the system's architecture is also performed to identify vulnerabilities and non-compliances with both the client's requisites and the standards and, for the identified vulnerabilities, corrective and mitigation measures are suggested. For the practical approach, a threat model was developed to help identify desirable assets on SCADA systems and possible attack vectors that could allow access to such assets. Penetration tests were performed on the prototype in order to validate the attack vectors, to evaluate compliance, and to provide evidence of the effectiveness of the corrective measures
    corecore