157 research outputs found

    A Distributed System for Parallel Simulations

    Get PDF
    We presented the technologies and algorithms to build a web-based visualization and steering system to monitor the dynamics of remote parallel simulations executed on a Linux Cluster. The polynomial time based algorithm to optimally utilize distributed computing resources over a network to achieve maximum frame-rate was also proposed. Keeping up with the advancements in modern web technologies, we have developed an Ajax-based web frontend which allows users to remotely access and control ongoing computations via a web browser facilitated by visual feedbacks in real-time. Experimental results are also given from sample runs mapped to distributed computing nodes and initiated by users at different geographical locations. Our preliminary results on frame-rates illustrated that system performance was affected by network conditions of the chosen mapping loop including available network bandwidth and computing capacities. The underlying programming framework of our system supports mixed-programming mode and is flexible to integrate most serial or parallel simulation code written in different programming languages such as Fortran, C and Java

    PPF - A Parallel Particle Filtering Library

    Full text link
    We present the parallel particle filtering (PPF) software library, which enables hybrid shared-memory/distributed-memory parallelization of particle filtering (PF) algorithms combining the Message Passing Interface (MPI) with multithreading for multi-level parallelism. The library is implemented in Java and relies on OpenMPI's Java bindings for inter-process communication. It includes dynamic load balancing, multi-thread balancing, and several algorithmic improvements for PF, such as input-space domain decomposition. The PPF library hides the difficulties of efficient parallel programming of PF algorithms and provides application developers with the necessary tools for parallel implementation of PF methods. We demonstrate the capabilities of the PPF library using two distributed PF algorithms in two scenarios with different numbers of particles. The PPF library runs a 38 million particle problem, corresponding to more than 1.86 GB of particle data, on 192 cores with 67% parallel efficiency. To the best of our knowledge, the PPF library is the first open-source software that offers a parallel framework for PF applications.Comment: 8 pages, 8 figures; will appear in the proceedings of the IET Data Fusion & Target Tracking Conference 201

    Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    Full text link
    • …
    corecore