10 research outputs found

    An Examination of Abstraction in K-12 Computer Science Education

    Get PDF
    Computer scientists have been working towards a common definition of abstraction; however, the instruction and assessment of abstraction remain categorically underresearched. Because abstraction is often cited as a component of computational thinking, abstraction has been summarily likened to a higher order thinking skill. A broad conceptual framework including philosophy, psychology, constructionism, and computational thinking was aligned with the descriptive qualitative design and guided the literature review and data analysis. This qualitative examination of how teachers determine curriculum, deliver instruction, and design assessments in K-12 computer science education provides insight into best practices and variables for future quantitative study. The instructional strategies, objectives, and assessments of twelve K-12 computer science teachers from 3 states were examined in this descriptive qualitative examination of instruction using thematic coding analysis. The majority of teachers had little to no professional development regarding teaching abstraction. All teachers in the study were unsure what student abstraction abilities should be according to grade level. Teachers\u27 understanding of abstraction ranged from very little knowledge to very knowledgeable. The majority of teachers did not actively assess abstraction. Teachers described successfully teaching abstraction through multiple instructional practices and spiraling curriculum. Practical descriptive insights illuminate additional variables to research the instruction of abstraction qualitatively and quantitatively, as well as provide anecdotal instructional successes

    The Design and Evaluation of an Educational Software Development Process for First Year Computing Undergraduates

    Get PDF
    First year, undergraduate computing students experience a series of well-known challenges when learning how to design and develop software solutions. These challenges, which include a failure to engage effectively with planning solutions prior to implementation ultimately impact upon the students’ competency and their retention beyond the first year of their studies. In the software industry, software development processes systematically guide the development of software solutions through iterations of analysis, design, implementation and testing. Industry-standard processes are, however, unsuitable for novice programmers as they require prior programming knowledge. This study investigates how a researcher-designed educational software development process could be created for novice undergraduate learners, and the impact of this process on their competence in learning how to develop software solutions. Based on an Action Research methodology that ran over three cycles, this research demonstrates how an educational software development methodology (termed FRESH) and its operationalised process (termed CADET which is a concrete implementation of the FRESH methodology), was designed and implemented as an educational tool for enhancing student engagement and competency in software development. Through CADET, students were reframed as software developers who understand the value in planning and developing software solutions, and not as programmers who prematurely try to implement solutions. While there remain opportunities to further enhance the technical sophistication of the process as it is implemented in practice, CADET enabled the software development steps of analysis and design to be explicit elements of developing software solutions, rather than their more typically implicit inclusion in introductory CS courses. The research contributes to the field of computing education by exploring the possibilities of – and by concretely generating – an appropriate scaffolded methodology and process; by illustrating the use of computational thinking and threshold concepts in software development; and by providing a novel evaluation framework (termed AKM-SOLO) to aid in the continuous improvement of educational processes and courses by measuring student learning experiences and competencies

    The Correlation Between Education Background and Student’s Grade Point Average (GPA) In Special Education Department Faculty of Education (FIP) Universitas Negeri Makasar (UNM)

    Get PDF
    Students of Special Education Department FIP UNM come from varied educational backgrounds and also have the various Grade Point Average (GPA). So that the aim of this research are : 1) How is the description of the educational background of students from the Special Education Department FIP UNM ? 2) How is the description of Grade Point Average (GPA) students of Special Education Department FIP UNM? 3) ls there any significant correlation between educational background in high school and Grade Point Average (GPA) of students in Special Education Department FIP UNM? This research uses a quantitative approach through correlation test. The study population was a student in Special Education Students, while the sample is the students from class of 2014 and 2015. The data collection used documentation on SIMPADU. The results that: 1) The educational background of the students of Special Education Department FIP UNM dominated by Science Major from senior high school. 2) GPA level of level of the students of Special Education Department FIP UNM is at the high category. 3) Educational background is one of the factor that correlated with GPA of the students of Special Education Department FIP UNM. This correlation is possible because the educational background that dominant is science majors which inextricably linked with some of the subjects taught in the Special Education Department. So that finding of this study is tif a student has the educational background that corresponds to his chosen field in college, then chances of high GPA will be easy. These findings also reinforce previous findings, although with different content

    Challenges for engineering students working with authentic complex problems

    Get PDF
    Engineers are important participants in solving societal, environmental and technical problems. However, due to an increasing complexity in relation to these problems new interdisciplinary competences are needed in engineering. Instead of students working with monodisciplinary problems, a situation where students work with authentic complex problems in interdisciplinary teams together with a company may scaffold development of new competences. The question is: What are the challenges for students structuring the work on authentic interdisciplinary problems? This study explores a three-day event where 7 students from Aalborg University (AAU) from four different faculties and one student from University College North Denmark (UCN), (6th-10th semester), worked in two groups at a large Danish company, solving authentic complex problems. The event was structured as a Hackathon where the students for three days worked with problem identification, problem analysis and finalizing with a pitch competition presenting their findings. During the event the students had workshops to support the work and they had the opportunity to use employees from the company as facilitators. It was an extracurricular activity during the summer holiday season. The methodology used for data collection was qualitative both in terms of observations and participants’ reflection reports. The students were observed during the whole event. Findings from this part of a larger study indicated, that students experience inability to transfer and transform project competences from their previous disciplinary experiences to an interdisciplinary setting

    Exploring the practical use of a collaborative robot for academic purposes

    Get PDF
    This article presents a set of experiences related to the setup and exploration of potential educational uses of a collaborative robot (cobot). The basic principles that have guided the work carried out have been three. First and foremost, study of all the functionalities offered by the robot and exploration of its potential academic uses both in subjects focused on industrial robotics and in subjects of related disciplines (automation, communications, computer vision). Second, achieve the total integration of the cobot at the laboratory, seeking not only independent uses of it but also seeking for applications (laboratory practices) in which the cobot interacts with some of the other devices already existing at the laboratory (other industrial robots and a flexible manufacturing system). Third, reuse of some available components and minimization of the number and associated cost of required new components. The experiences, carried out following a project-based learning methodology under the framework of bachelor and master subjects and thesis, have focused on the integration of mechanical, electronic and programming aspects in new design solutions (end effector, cooperative workspace, artificial vision system integration) and case studies (advanced task programming, cybersecure communication, remote access). These experiences have consolidated the students' acquisition of skills in the transition to professional life by having the close collaboration of the university faculty with the experts of the robotics company.Postprint (published version

    The Increasing Necessity of Skills Diversity in Team Teaching

    Get PDF
    corecore