3,614 research outputs found

    Logic, self-awareness and self-improvement: The metacognitive loop and the problem of brittleness

    Get PDF
    This essay describes a general approach to building perturbation-tolerant autonomous systems, based on the conviction that artificial agents should be able notice when something is amiss, assess the anomaly, and guide a solution into place. We call this basic strategy of self-guided learning the metacognitive loop; it involves the system monitoring, reasoning about, and, when necessary, altering its own decision-making components. In this essay, we (a) argue that equipping agents with a metacognitive loop can help to overcome the brittleness problem, (b) detail the metacognitive loop and its relation to our ongoing work on time-sensitive commonsense reasoning, (c) describe specific, implemented systems whose perturbation tolerance was improved by adding a metacognitive loop, and (d) outline both short-term and long-term research agendas

    A Role-Based Approach for Orchestrating Emergent Configurations in the Internet of Things

    Full text link
    The Internet of Things (IoT) is envisioned as a global network of connected things enabling ubiquitous machine-to-machine (M2M) communication. With estimations of billions of sensors and devices to be connected in the coming years, the IoT has been advocated as having a great potential to impact the way we live, but also how we work. However, the connectivity aspect in itself only accounts for the underlying M2M infrastructure. In order to properly support engineering IoT systems and applications, it is key to orchestrate heterogeneous 'things' in a seamless, adaptive and dynamic manner, such that the system can exhibit a goal-directed behaviour and take appropriate actions. Yet, this form of interaction between things needs to take a user-centric approach and by no means elude the users' requirements. To this end, contextualisation is an important feature of the system, allowing it to infer user activities and prompt the user with relevant information and interactions even in the absence of intentional commands. In this work we propose a role-based model for emergent configurations of connected systems as a means to model, manage, and reason about IoT systems including the user's interaction with them. We put a special focus on integrating the user perspective in order to guide the emergent configurations such that systems goals are aligned with the users' intentions. We discuss related scientific and technical challenges and provide several uses cases outlining the concept of emergent configurations.Comment: In Proceedings of the Second International Workshop on the Internet of Agents @AAMAS201

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures (WAmIi)

    Get PDF
    This is a technical report including the papers presented at the Workshop on Ambient Intelligence Infrastructures (WAmIi) that took place in conjunction with the International Joint Conference on Ambient Intelligence (AmI) in Pisa, Italy on November 13, 2012. The motivation for organizing the workshop was the wish to learn from past experience on Ambient Intelligence systems, and in particular, on the lessons learned on the system architecture of such systems. A significant number of European projects and other research have been performed, often with the goal of developing AmI technology to showcase AmI scenarios. We believe that for AmI to become further successfully accepted the system architecture is essential

    Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures (WAmIi)

    Get PDF
    This is a technical report including the papers presented at the Workshop on Ambient Intelligence Infrastructures (WAmIi) that took place in conjunction with the International Joint Conference on Ambient Intelligence (AmI) in Pisa, Italy on November 13, 2012. The motivation for organizing the workshop was the wish to learn from past experience on Ambient Intelligence systems, and in particular, on the lessons learned on the system architecture of such systems. A significant number of European projects and other research have been performed, often with the goal of developing AmI technology to showcase AmI scenarios. We believe that for AmI to become further successfully accepted the system architecture is essential

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    Evaluation of Agents Interactions in a Context-Aware System

    Get PDF
    The evaluation of Multi-Agent Systems (MAS) is a complex problem and it does not have a single form. Much effort has been spent on suggesting and implementing new architectures of MAS. Often these new architectures are not even compared to any other existing architectures in order to evaluate their relative benefits. The present work focuses on interactions, the most important characteristic of any complex software as autonomous agents according to [25], as a problematic of evaluation. So, in this paper, we describe the assignment of evaluation values to Agents interaction in a specific MAS architecture. This evaluation is based on the weight of the messages brought by an interaction.Funded by projects CICYT TIN2008-06742-C02-02/TSI,CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255, and DPS2008-07029-C02-02.Publicad

    Exploring The Responsibilities Of Single-Inhabitant Smart Homes With Use Cases

    Get PDF
    DOI: 10.3233/AIS-2010-0076This paper makes a number of contributions to the field of requirements analysis for Smart Homes. It introduces Use Cases as a tool for exploring the responsibilities of Smart Homes and it proposes a modification of the conventional Use Case structure to suit the particular requirements of Smart Homes. It presents a taxonomy of Smart-Home-related Use Cases with seven categories. It draws on those Use Cases as raw material for developing questions and conclusions about the design of Smart Homes for single elderly inhabitants, and it introduces the SHMUC repository, a web-based repository of Use Cases related to Smart Homes that anyone can exploit and to which anyone may contribute

    Semantic Brokering of Multimedia Contents for Smart Delivery of Ubiquitous Services in Pervasive Environments

    Get PDF
    With the proliferation of modern mobile devices having the capability to interact each other and with the environment in a transparent manner, there is an increase in the development of those applications that are specifically designed for pervasive and ubiquitous environments. Those applications are able to provide a service of interest for the user that depends on context information, such as the user's position, his preferences, the capability of the device and its available resources. Services have to respond in a rational way in many different situations choosing the actions with the best expected result by the user, so making environment not only more connected and efficient, but smarter. Here we present a semantic framework that provides the technology for the development of intelligent, context aware services and their delivery in pervasive and ubiquitous environments
    corecore