79 research outputs found

    The Healthgrid White Paper

    Get PDF

    Software for the Genetic Analysis Domain

    Full text link
    In this report we overview the state of the art in software for genetic analysis, starting from software tools for genetic analysis, moving on to software tools for genomic analysis, and ending with bioinformatic pipeline development environments.Villanueva Del Pozo, MJ.; Valverde Giromé, F.; Pastor López, O. (2015). Software for the Genetic Analysis Domain. http://hdl.handle.net/10251/5742

    Grid-based semantic integration of heterogeneous data resources : implementation on a HealthGrid

    Get PDF
    The semantic integration of geographically distributed and heterogeneous data resources still remains a key challenge in Grid infrastructures. Today's mainstream Grid technologies hold the promise to meet this challenge in a systematic manner, making data applications more scalable and manageable. The thesis conducts a thorough investigation of the problem, the state of the art, and the related technologies, and proposes an Architecture for Semantic Integration of Data Sources (ASIDS) addressing the semantic heterogeneity issue. It defines a simple mechanism for the interoperability of heterogeneous data sources in order to extract or discover information regardless of their different semantics. The constituent technologies of this architecture include Globus Toolkit (GT4) and OGSA-DAI (Open Grid Service Architecture Data Integration and Access) alongside other web services technologies such as XML (Extensive Markup Language). To show this, the ASIDS architecture was implemented and tested in a realistic setting by building an exemplar application prototype on a HealthGrid (pilot implementation). The study followed an empirical research methodology and was informed by extensive literature surveys and a critical analysis of the relevant technologies and their synergies. The two literature reviews, together with the analysis of the technology background, have provided a good overview of the current Grid and HealthGrid landscape, produced some valuable taxonomies, explored new paths by integrating technologies, and more importantly illuminated the problem and guided the research process towards a promising solution. Yet the primary contribution of this research is an approach that uses contemporary Grid technologies for integrating heterogeneous data resources that have semantically different. data fields (attributes). It has been practically demonstrated (using a prototype HealthGrid) that discovery in semantically integrated distributed data sources can be feasible by using mainstream Grid technologies, which have been shown to have some Significant advantages over non-Grid based approaches.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Studies on distributed approaches for large scale multi-criteria protein structure comparison and analysis

    Get PDF
    Protein Structure Comparison (PSC) is at the core of many important structural biology problems. PSC is used to infer the evolutionary history of distantly related proteins; it can also help in the identification of the biological function of a new protein by comparing it with other proteins whose function has already been annotated; PSC is also a key step in protein structure prediction, because one needs to reliably and efficiently compare tens or hundreds of thousands of decoys (predicted structures) in evaluation of 'native-like' candidates (e.g. Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment). Each of these applications, as well as many others where molecular comparison plays an important role, requires a different notion of similarity, which naturally lead to the Multi-Criteria Protein Structure Comparison (MC-PSC) problem. ProCKSI (www.procksi.org), was the first publicly available server to provide algorithmic solutions for the MC-PSC problem by means of an enhanced structural comparison that relies on the principled application of information fusion to similarity assessments derived from multiple comparison methods (e.g. USM, FAST, MaxCMO, DaliLite, CE and TMAlign). Current MC-PSC works well for moderately sized data sets and it is time consuming as it provides public service to multiple users. Many of the structural bioinformatics applications mentioned above would benefit from the ability to perform, for a dedicated user, thousands or tens of thousands of comparisons through multiple methods in real-time, a capacity beyond our current technology. This research is aimed at the investigation of Grid-styled distributed computing strategies for the solution of the enormous computational challenge inherent in MC-PSC. To this aim a novel distributed algorithm has been designed, implemented and evaluated with different load balancing strategies and selection and configuration of a variety of software tools, services and technologies on different levels of infrastructures ranging from local testbeds to production level eScience infrastructures such as the National Grid Service (NGS). Empirical results of different experiments reporting on the scalability, speedup and efficiency of the overall system are presented and discussed along with the software engineering aspects behind the implementation of a distributed solution to the MC-PSC problem based on a local computer cluster as well as with a GRID implementation. The results lead us to conclude that the combination of better and faster parallel and distributed algorithms with more similarity comparison methods provides an unprecedented advance on protein structure comparison and analysis technology. These advances might facilitate both directed and fortuitous discovery of protein similarities, families, super-families, domains, etc, and also help pave the way to faster and better protein function inference, annotation and protein structure prediction and assessment thus empowering the structural biologist to do a science that he/she would not have done otherwise

    Studies on distributed approaches for large scale multi-criteria protein structure comparison and analysis

    Get PDF
    Protein Structure Comparison (PSC) is at the core of many important structural biology problems. PSC is used to infer the evolutionary history of distantly related proteins; it can also help in the identification of the biological function of a new protein by comparing it with other proteins whose function has already been annotated; PSC is also a key step in protein structure prediction, because one needs to reliably and efficiently compare tens or hundreds of thousands of decoys (predicted structures) in evaluation of 'native-like' candidates (e.g. Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment). Each of these applications, as well as many others where molecular comparison plays an important role, requires a different notion of similarity, which naturally lead to the Multi-Criteria Protein Structure Comparison (MC-PSC) problem. ProCKSI (www.procksi.org), was the first publicly available server to provide algorithmic solutions for the MC-PSC problem by means of an enhanced structural comparison that relies on the principled application of information fusion to similarity assessments derived from multiple comparison methods (e.g. USM, FAST, MaxCMO, DaliLite, CE and TMAlign). Current MC-PSC works well for moderately sized data sets and it is time consuming as it provides public service to multiple users. Many of the structural bioinformatics applications mentioned above would benefit from the ability to perform, for a dedicated user, thousands or tens of thousands of comparisons through multiple methods in real-time, a capacity beyond our current technology. This research is aimed at the investigation of Grid-styled distributed computing strategies for the solution of the enormous computational challenge inherent in MC-PSC. To this aim a novel distributed algorithm has been designed, implemented and evaluated with different load balancing strategies and selection and configuration of a variety of software tools, services and technologies on different levels of infrastructures ranging from local testbeds to production level eScience infrastructures such as the National Grid Service (NGS). Empirical results of different experiments reporting on the scalability, speedup and efficiency of the overall system are presented and discussed along with the software engineering aspects behind the implementation of a distributed solution to the MC-PSC problem based on a local computer cluster as well as with a GRID implementation. The results lead us to conclude that the combination of better and faster parallel and distributed algorithms with more similarity comparison methods provides an unprecedented advance on protein structure comparison and analysis technology. These advances might facilitate both directed and fortuitous discovery of protein similarities, families, super-families, domains, etc, and also help pave the way to faster and better protein function inference, annotation and protein structure prediction and assessment thus empowering the structural biologist to do a science that he/she would not have done otherwise

    Efficient algorithms and architectures for protein 3-D structure comparison

    Get PDF
    Η σύγκριση δομών πρωτεϊνών είναι ανεπτυγμένος τομέας της υπολογιστικής πρωτεϊνωμικής που χρησιμοποιείται ευρέως στη δομική βιολογία και την ανακάλυψη φαρμάκων. Οι αυξανόμενες υπολογιστικές απαιτήσεις του είναι αποτέλεσμα τριών παραγόντων: ταχεία επέκταση των βάσεων δεδομένων με νέες δομές πρωτεϊνών, υψηλή υπολογιστική πολυπλοκότητα των αλγορίθμων σύγκρισης δομών πρωτεϊνών κατά ζεύγη (PSC), και τάση χρήσης πολλαπλών μεθόδων σύγκρισης και συνδυασμού των αποτελεσμάτων τους (multi criteria protein structure comparison-MCPSC-), μιας και δεν υπάρχει PSC μέθοδος κοινά αποδεκτή ως η καλύτερη. Αναπτύξαμε πλαίσιο λογισμικού που εκμεταλλεύεται επεξεργαστές πολλών πυρήνων για την υλοποίηση παράλληλων στρατηγικών MCPSC με βάση τρεις δημοφιλείς PSC μεθόδους, τις TMalign, CE και USM. Συγκρίνουμε την απόδοση και αποδοτικότητα δύο παράλληλων υλοποιήσεων MCPSC στον πειραματικό επεξεργαστή δικτύου σε ψηφίδα (Network on Chip)  Intel Single-Chip Cloud Computer και τον δημοφιλή επεξεργαστή Intel Core i7. Επιπλέον, αναπτύξαμε εκτενές υπολογιστικό pipeline και υλοποίησή του με πρόγραμμα Python, που ονομάζεται pyMCPSC, που επιτρέπει στους χρήστες να εκτελούν MCPSC διεργασίες σε επεξεργαστές πολλαπλών πυρήνων. Το pyMCPSC, το οποίο συνδυάζει πέντε μεθόδους PSC και υποστηρίζει πέντε διαφορετικά σχήματα συναίνεσης MCPSC, υποστηρίζει τη συγκριτική ανάλυση μεγάλων συνόλων με δομές πρωτεϊνών και μπορεί να επεκταθεί ώστε να ενσωματώσει και νέες μεθόδους PSC στις βαθμολογίες συναίνεσης, καθώς αυτές καθίστανται διαθέσιμες.Protein Structure Comparison (PSC) is a well developed field of computational proteomics with active interest since it is widely used in structural biology and drug discovery. Fast increasing computational demand for all-to-all protein structures comparison is a result of mainly three factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise PSC algorithms, and the trend towards using multiple criteria for comparison and combining their results (MCPSC). In this thesis we have developed a software framework that exploits many-core and multi-core CPUs to implement efficient parallel MCPSC schemes in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of two parallel MCPSC implementations using Intel’s experimental many-core Single-Chip Cloud Computer (SCC) CPU as well as Intel’s Core i7 multi-core processor. Further, we have developed a dataset processing pipeline and implemented it in a Python utility, called pyMCPSC, allowing users to perform MCPSC efficiently on multi-core CPU. pyMCPSC, which combines five PSC methods and five different consensus scoring schemes, facilitates the analysis of similarities in protein domain datasets and can be easily extended to incorporate more PSC methods in the consensus scoring as they are becoming available
    corecore