1,859 research outputs found

    Verification of knowledge shared across design and manufacture using a foundation ontology

    Get PDF
    Seamless computer-based knowledge sharing between departments of a manufacturing enterprise is useful in preventing unnecessary design revisions. A lack of interoperability between independently developed knowledge bases, however, is a major impediment in the development of a seamless knowledge sharing system. Interoperability, being an ability to overcome semantic and syntactic differences during computer-based knowledge sharing can be enhanced through the use of ontologies. Ontologies in computer science terms are hierarchical structures of knowledge stored in a computer-based knowledge base. Ontologies have been accepted by all as an interoperable medium to provide a non-subjective way of storing and sharing knowledge across diverse domains. Some semantic and syntactic differences, however, still crop up when these ontological knowledge bases are developed independently. A case study in an aerospace components manufacturing company suggests that shape features of a component are perceived differently by the designing and manufacturing departments. These differences cause further misunderstanding and misinterpretation when computer-based knowledge sharing systems are used across the two domains. Foundation or core ontologies can be used to overcome these differences and to ensure a seamless sharing of knowledge. This is because these ontologies provide a common grounding for domain ontologies to be used by individual domains or department. This common grounding can be used by the mediation and knowledge verification systems to authenticate the meaning of knowledge understood across different domains. For this reason, this research proposes a knowledge verification framework for developing a system capable of verifying knowledge between those domain ontologies which are developed out of a common core or foundation ontology. This framework makes use of ontology logic to standardize the way concepts from a foundation and core-concepts ontology are used in domain ontologies and then by using the same principles the knowledge being shared is verified. The Knowledge Frame Language which is based on Common Logic is used for formalizing example ontologies. The ontology editor used for browsing and querying ontologies is the Integrated Ontology Development Environment (IODE) by Highfleet Inc. An ontological product modelling technique is also developed in this research, to test the proposed framework in the scenario of manufacturability analysis. The proposed framework is then validated through a Java API specially developed for this purpose. Real industrial examples experienced during the case study are used for validation

    A Knowledge Graph Based Integration Approach for Industry 4.0

    Get PDF
    The fourth industrial revolution, Industry 4.0 (I40) aims at creating smart factories employing among others Cyber-Physical Systems (CPS), Internet of Things (IoT) and Artificial Intelligence (AI). Realizing smart factories according to the I40 vision requires intelligent human-to-machine and machine-to-machine communication. To achieve this communication, CPS along with their data need to be described and interoperability conflicts arising from various representations need to be resolved. For establishing interoperability, industry communities have created standards and standardization frameworks. Standards describe main properties of entities, systems, and processes, as well as interactions among them. Standardization frameworks classify, align, and integrate industrial standards according to their purposes and features. Despite being published by official international organizations, different standards may contain divergent definitions for similar entities. Further, when utilizing the same standard for the design of a CPS, different views can generate interoperability conflicts. Albeit expressive, standardization frameworks may represent divergent categorizations of the same standard to some extent, interoperability conflicts need to be resolved to support effective and efficient communication in smart factories. To achieve interoperability, data need to be semantically integrated and existing conflicts conciliated. This problem has been extensively studied in the literature. Obtained results can be applied to general integration problems. However, current approaches fail to consider specific interoperability conflicts that occur between entities in I40 scenarios. In this thesis, we tackle the problem of semantic data integration in I40 scenarios. A knowledge graphbased approach allowing for the integration of entities in I40 while considering their semantics is presented. To achieve this integration, there are challenges to be addressed on different conceptual levels. Firstly, defining mappings between standards and standardization frameworks; secondly, representing knowledge of entities in I40 scenarios described by standards; thirdly, integrating perspectives of CPS design while solving semantic heterogeneity issues; and finally, determining real industry applications for the presented approach. We first devise a knowledge-driven approach allowing for the integration of standards and standardization frameworks into an Industry 4.0 knowledge graph (I40KG). The standards ontology is used for representing the main properties of standards and standardization frameworks, as well as relationships among them. The I40KG permits to integrate standards and standardization frameworks while solving specific semantic heterogeneity conflicts in the domain. Further, we semantically describe standards in knowledge graphs. To this end, standards of core importance for I40 scenarios are considered, i.e., the Reference Architectural Model for I40 (RAMI4.0), AutomationML, and the Supply Chain Operation Reference Model (SCOR). In addition, different perspectives of entities describing CPS are integrated into the knowledge graphs. To evaluate the proposed methods, we rely on empirical evaluations as well as on the development of concrete use cases. The attained results provide evidence that a knowledge graph approach enables the effective data integration of entities in I40 scenarios while solving semantic interoperability conflicts, thus empowering the communication in smart factories

    A semantic common model for product data in the water industry

    Get PDF

    Proceedings of the 4th Workshop of the MPM4CPS COST Action

    Get PDF
    Proceedings of the 4th Workshop of the MPM4CPS COST Action with the presentations delivered during the workshop and papers with extended versions of some of them

    Digitalization of Battery Manufacturing: Current Status, Challenges, and Opportunities

    Get PDF
    As the world races to respond to the diverse and expanding demands for electrochemical energy storage solutions, lithium-ion batteries (LIBs) remain the most advanced technology in the battery ecosystem. Even as unprecedented demand for state-of-the-art batteries drives gigascale production around the world, there are increasing calls for next-generation batteries that are safer, more affordable, and energy-dense. These trends motivate the intense pursuit of battery manufacturing processes that are cost effective, scalable, and sustainable. The digital transformation of battery manufacturing plants can help meet these needs. This review provides a detailed discussion of the current and near-term developments for the digitalization of the battery cell manufacturing chain and presents future perspectives in this field. Current modelling approaches are reviewed, and a discussion is presented on how these elements can be combined with data acquisition instruments and communication protocols in a framework for building a digital twin of the battery manufacturing chain. The challenges and emerging techniques provided here is expected to give scientists and engineers from both industry and academia a guide toward more intelligent and interconnected battery manufacturing processes in the future.publishedVersio

    Digitalization of Battery Manufacturing: Current Status, Challenges, and Opportunities

    Get PDF
    As the world races to respond to the diverse and expanding demands for electrochemical energy storage solutions, lithium-ion batteries (LIBs) remain the most advanced technology in the battery ecosystem. Even as unprecedented demand for state-of-the-art batteries drives gigascale production around the world, there are increasing calls for next-generation batteries that are safer, more affordable, and energy-dense. These trends motivate the intense pursuit of battery manufacturing processes that are cost effective, scalable, and sustainable. The digital transformation of battery manufacturing plants can help meet these needs. This review provides a detailed discussion of the current and near-term developments for the digitalization of the battery cell manufacturing chain and presents future perspectives in this field. Current modelling approaches are reviewed, and a discussion is presented on how these elements can be combined with data acquisition instruments and communication protocols in a framework for building a digital twin of the battery manufacturing chain. The challenges and emerging techniques provided here is expected to give scientists and engineers from both industry and academia a guide toward more intelligent and interconnected battery manufacturing processes in the future

    A methodology for designing layered ontology structures

    Get PDF
    Semantic ontologies represent the knowledge from different domains, which is used as a knowledge base by intelligent agents. The creation of ontologies by different developers leads to heterogeneous ontologies, which hampers the interoperability between knowledge-based applications. This interoperability is achieved through global ontologies, which provide a common domain representation. Global ontologies must provide a balance of reusability-usability to minimise the ontology effort in different applications. To achieve this balance, ontology design methodologies focus on designing layered ontologies that classify into abstraction layers the domain knowledge relevant to many applications and the knowledge relevant to specific applications. During the design of the layered ontology structure, the domain knowledge classification is performed from scratch by domain experts and ontology engineers in collaboration with application stakeholders. Hence, the design of reusable and usable ontologies in complex domains takes a significant effort. Software Product Line (SPL) design techniques can be applied to facilitate the domain knowledge classification by analysing the knowledge similarities/differences of existing ontologies. In this context, this thesis aims to define new methodological guidelines to design layered ontology structures that enable to classify the domain knowledge taking as reference existing ontologies, and to apply these guidelines to enable the development of reusable and usable ontologies in complex domains. The MODDALS methodology guides the design of layered ontology structures for reusable and usable ontologies. It brings together SPL engineering techniques and ontology design techniques to enable the classification of the domain knowledge by exploiting the knowledge similarities/differences of existing ontologies. MODDALS eases the design of the layered ontology structure. The MODDALS methodology was evaluated by applying it to design the layered structure of a reusable and usable global ontology for the energy domain. The designed layered structure was taken as reference to develop the ontology. The resulting ontology simplifies the ontology reuse process in different applications. In particular, it reduced the average ontology reuse time by 0.5 and 1.2 person-hours in in two different applications in comparison with a global energy ontology which does not follow a layered structure.Ontologia semantikoak datu domeinu ezberdinen ezagutza irudikatzen dute, agente adimendunek jakintza oinarri bezala erabiltzen dutena. Ontologiak ingeniari desberdinek garatzen dituzte eta heterogeneoak dira, aplikazioen arteko komunikazioa oztopatuz. Komunikazio hau ontologia globalen bidez lortzen da, domeinuaren errepresentazio komun bat ematen baitute. Ontologia globalek berrerabilgarritasunerabilgarritasun oreka eman behar dute aplikazio desberdinetan berrerabiltzeko ahalegina murrizteko. Horretarako, ontologia diseinu metodologiek aplikazio askok erabiltzen duten eta aplikazio zehatzetarako garrantzitsua den ezagutza abstrakzio geruzetan sailkatzea proposatzen dute. Geruza egituraren diseinuan zehar, domeinuko adituek eta ontologiako ingeniariek hutsetik sailkatzen dute jakintza, domeinu konplexuetan ontologia berrerabilgarriak eta erabilgarrien diseinu ahalegina areagotuz. Software produktu lerroak diseinatzeko erabiltzen diren teknikak jakintza sailkatzea erraztu ahal dute, ontologien ezagutza antzekotasunak edo desberdintasunak aztertuz. Testuinguru honetan, honakoa da tesiaren helburua: ezagutza garatutako ontologien arabera sailkatzen duen ontologia berrerabilgarri eta erabilgarrien geruza egitura diseinatzeko metodologia bat garatzea; baita metodologia aplikatu ere, ontologia berrerabilgarri eta erabilgarriak domeinu konplexuetan garatu ahal izateko. MODDALS metodologiak ontologia berrerabilgarri eta erabilgarrien abstrakzio geruzak nola diseinatu azaltzen du. MODDALS-ek software produktu lerro eta ontologia diseinu teknikak aplikatzen ditu ezagutza garatuta dauden ontologien antzekotasunen/desberdintasunen arabera sailkatzeko. Planteamendu honek geruza egitura diseinua errazten du. MODDALS ebaluatu da energia domeinurako ontologia berrerabilgarri eta erabilgarri baten egitura diseinatzeko aplikatuz. Diseinatutako geruza egitura erreferentzia gisa hartu da ontologia gartzeko. Egitura onekin, garatutako ontologia berrerabiltzea errazten du aplikazio desberdinetan. Konkretuki, garatutako ontologiak berrerabilpen denbora 0.5 eta 1.2 pertsona-orduetan murriztu du bi aplikazioetan; geruza egitura jarraitzen ez duen ontologia batekin alderatuz.Las ontologías semánticas representan el conocimiento de diferentes dominios, utilizado como base de conocimiento por agentes inteligentes. Las ontologías son desarrolladas por diferentes ingenieros y son heterogéneas, afectando a la interoperabilidad entre aplicaciones. Esta interoperabilidad se logra mediante ontologías globales que proporcionan una representación común del dominio, las cuales deben proporcionar un balance de reusabilidad-usabilidad para minimizar el esfuerzo de reutilización en diferentes aplicaciones. Para lograr este balance, las metodologías de diseño de ontologías proponen clasificar en capas de abstracción el conocimiento del dominio común a muchas aplicaciones y el que es relevante para aplicaciones específicas. Durante el diseño de la estructura de capas, el conocimiento se clasifica partiendo de cero por expertos del dominio e ingenieros de ontologías. Por lo tanto, el diseño de ontologías reusables y usables en dominios complejos requiere un gran esfuerzo. Las técnicas de diseño de líneas de producto de software pueden facilitar la clasificación del conocimiento analizando las similitudes/diferencias de conocimiento de ontologías existentes. En este contexto, el objetivo de la tesis es crear una metodología de diseño de la estructura de capas para ontologías que permita clasificar el conocimiento tomando como referencia ontologías existentes, y aplicar esta metodología para poder desarrollar ontologías reusables y usables en dominios complejos. La metodología MODDALS explica cómo diseñar estructuras de capas para ontologías reusables y usables. MODDALS adopta técnicas de diseño de líneas de producto en combinación con técnicas de diseño de ontologías para clasificar el conocimiento basándose en las similitudes/diferencias de ontologías existentes. Este enfoque facilita el diseño de la estructura de capas de la ontología. La metodología MODDALS se ha evaluado aplicándola para diseñar la estructura de capas de una ontología global reusable y usable para el dominio de la energía. La estructura de capas diseñada se ha tomado como referencia para desarrollar la ontología. Con esta estructura, la ontología resultante simplifica la reutilización de ontologías en diferentes aplicaciones. En concreto, la ontología redujo el tiempo de reutilización en 0.5 y 1.2 personas-hora en dos aplicaciones respecto a una ontología global que no sigue una estructura por capas

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201
    corecore