756 research outputs found

    UML for Validation: Experimenting automatic test generation for flight software validation

    Get PDF
    International audienceUML for validation is a CNES study that aims at prototyping and experimenting automatic test generation technologies in the context of a model-based approach applied to on-board software development and tests. Starting from real test cases and test procedures taken from state-of-the-art onboard software, we first applied a reverse engineering methodology to obtain an augmented software specification model, i.e. ready to support automated test generation. In parallel, we defined and prototyped a test generation tool using innovative model-based technologies based on EMF (Eclipse Modeling Framework). Finally, a representative end-to-end experiment was performed to evaluate the benefit of such technologies

    SYSML4TA: A SysML Profile for Consistent Tolerance Analysis in a Manufacturing System Case Application

    Get PDF
    Tolerance analysis is a key engineering task that is usually supported by domain-specific analysis models and tools that are generally not connected to the system functionality. The model-based system engineering (MBSE) approach is a potential solution to this limitation, but it has not yet been deeply explored in this type of mechanical analysis, for which some problems need to be explored. One of these issues is the capacity of languages such as SysML to describe solution principles based on active surfaces that participate in functionality and are present for tolerance analysis. Thus, this study explored the possibilities that enable SysML to represent these geometries and their mathematical relationships based on Topologically and Technologically Related Surfaces (TTRS) theory and aligned with Geometric Dimensioning and Tolerancing (GD&T) standards. Additionally, the capacity of SysML to assure the consistency of tolerance analysis models is also explored, due to the limitations identified in analysis languages like Modelica. In this context, this paper presents a SysML profile for tolerance analysis modeling (SysML4TA), containing domain-specific semantics (concepts and constraints) to assure the completeness of the analysis models and consistency between the different models considered in the integrated model of the system. Finally, a case study applied to a manufacturing context is presented to validate the capacity of SysML to solve the identified problems.La herencia reconstruida. Crecimiento agrario y transformaciones del paisaje tras las conquistas de al-Andalus (siglos XII-XV

    Reliability prediction in model driven development

    Get PDF
    Evaluating the implications of an architecture design early in the software development lifecycle is important in order to reduce costs of development. Reliability is an important concern with regard to the correct delivery of software system service. Recently, the UML Profile for Modeling Quality of Service has defined a set of UML extensions to represent dependability concerns (including reliability) and other non-functional requirements in early stages of the software development lifecycle. Our research has shown that these extensions are not comprehensive enough to support reliability analysis for model-driven software engineering, because the description of reliability characteristics in this profile lacks support for certain dynamic aspects that are essential in modeling reliability. In this work, we define a profile for reliability analysis by extending the UML 2.0 specification to support reliability prediction based on scenario specifications. A UML model specified using the profile is translated to a labelled transition system (LTS), which is used for automated reliability prediction and identification of implied scenarios; the results of this analysis are then fed back to the UML model. The result is a comprehensive framework for addressing software reliability modeling, including analysis and evolution of reliability predictions. We exemplify our approach using the Boiler System used in previous work and demonstrate how reliability analysis results can be integrated into UML models

    Automatic generation of software applications: a platform-based MDA approach

    Get PDF
    The Model Driven Architecture (MDA) allows moving the software development from the time consuming and error-prone level of writing program code to the next higher level of modeling. In order to gain benefit from this innovative technology, it is necessary to satisfy two requirements. These are first, the creation of compact, complete and correct platform independent models (PIM) and second, the development of a flexible and extensible model transformation framework taking into account frequent changes of the target platform. In this thesis a platform-based methodology is developed to create PIM by abstracting common modeling elements into a platform independent modeling library called Design Platform Model (DPM). The DPM contains OCL-based types for modeling primitive and collection types, a platform independent GUI toolkit as well as other common modeling elements, such as those for IO-operations. Furthermore, a DPM profile containing diverse domain specific and design pattern-based stereotypes is also developed to create PIM with high-level semantics. The behavior in PIM is specified using an OCL-like action language called eXecutable OCL (XOCL), which is also developed in this thesis. For model transformation, the model compiler MOCCA is developed based on a flexible and extensible architecture. The model mapper components in the current version of MOCCA are able to map desktop applications onto JSE platform; the both business object layer and persistence layer of a three-layered enterprise applications onto JEE platform and SAP ABAP platform. The entire model transformation process is finished with complete code generation

    Design of a Railway Domain Profile and its OCL-based Validation

    Get PDF
    Domain-specific languages become more and more important these days as they facilitate the close collaboration of domain experts and software developers. One effect of this general tendency is the increasing number of UML profiles. UML itself as the most popular modeling language is capable of modeling all kinds of systems but it is often inefficient due to its wide-spectrum approach. Profiles tailor the UML to a specific domain and can hence be seen as domain-specific dialects of UML. At the moment, profiles mainly introduce new terminology, often in combination with OCL constraints which describe the new constructs more precisely. As most tools do not support validation of OCL expressions let alone supplementing profiles with OCL constraints, it is difficult to check if models based on a profile comply to this profile. A related problem is checking whether constraints in the profile contradict constraints in the UML specification. In this paper, it is shown how to complete these tasks with the tool USE. As an example, a profile from the railway control systems domain is taken which describes the use of its modeling elements quite strictly. Models based on this profile serve as a foundation for automated code generation. Therefore, they require a rigorous and unambiguous meaning. OCL is heavily used to reach this goal

    TURTLE-P: a UML profile for the formal validation of critical and distributed systems

    Get PDF
    The timed UML and RT-LOTOS environment, or TURTLE for short, extends UML class and activity diagrams with composition and temporal operators. TURTLE is a real-time UML profile with a formal semantics expressed in RT-LOTOS. Further, it is supported by a formal validation toolkit. This paper introduces TURTLE-P, an extended profile no longer restricted to the abstract modeling of distributed systems. Indeed, TURTLE-P addresses the concrete descriptions of communication architectures, including quality of service parameters (delay, jitter, etc.). This new profile enables co-design of hardware and software components with extended UML component and deployment diagrams. Properties of these diagrams can be evaluated and/or validated thanks to the formal semantics given in RT-LOTOS. The application of TURTLE-P is illustrated with a telecommunication satellite system

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction
    • 

    corecore