783 research outputs found

    Predicting Protein Subcellular Localization: Past, Present, and Future

    Get PDF
    Functional characterization of every single protein is a major challenge of the post-genomic era. The large-scale analysis of a cell’s proteins, proteomics, seeks to provide these proteins with reliable annotations regarding their interaction partners and functions in the cellular machinery. An important step on this way is to determine the subcellular localization of each protein. Eukaryotic cells are divided into subcellular compartments, or organelles. Transport across the membrane into the organelles is a highly regulated and complex cellular process. Predicting the subcellular localization by computational means has been an area of vivid activity during recent years. The publicly available prediction methods differ mainly in four aspects: the underlying biological motivation, the computational method used, localization coverage, and reliability, which are of importance to the user. This review provides a short description of the main events in the protein sorting process and an overview of the most commonly used methods in this field

    PROlocalizer: integrated web service for protein subcellular localization prediction

    Get PDF
    Subcellular localization is an important protein property, which is related to function, interactions and other features. As experimental determination of the localization can be tedious, especially for large numbers of proteins, a number of prediction tools have been developed. We developed the PROlocalizer service that integrates 11 individual methods to predict altogether 12 localizations for animal proteins. The method allows the submission of a number of proteins and mutations and generates a detailed informative document of the prediction and obtained results. PROlocalizer is available at http://bioinf.uta.fi/PROlocalizer/

    RSLpred: an integrative system for predicting subcellular localization of rice proteins combining compositional and evolutionary information

    Get PDF
    The attainment of complete map-based sequence for rice (Oryza sativa) is clearly a major milestone for the research community. Identifying the localization of encoded proteins is the key to understanding their functional characteristics and facilitating their purification. Our proposed method, RSLpred, is an effort in this direction for genome-scale subcellular prediction of encoded rice proteins. First, the support vector machine (SVM)-based modules have been developed using traditional amino acid-, dipeptide- (i+1) and four parts-amino acid composition and achieved an overall accuracy of 81.43, 80.88 and 81.10%, respectively. Secondly, a similarity search-based module has been developed using position-specific iterated-basic local alignment search tool and achieved 68.35% accuracy. Another module developed using evolutionary information of a protein sequence extracted from position-specific scoring matrix achieved an accuracy of 87.10%. In this study, a large number of modules have been developed using various encoding schemes like higher-order dipeptide composition, N- and C-terminal, splitted amino acid composition and the hybrid information. In order to benchmark RSLpred, it was tested on an independent set of rice proteins where it outperformed widely used prediction methods such as TargetP, Wolf-PSORT, PA-SUB, Plant-Ploc and ESLpred. To assist the plant research community, an online web tool 'RSLpred' has been developed for subcellular prediction of query rice proteins, which is freely accessible at http://www.imtech.res.in/raghava/rslpred

    Going from where to why—interpretable prediction of protein subcellular localization

    Get PDF
    Motivation: Protein subcellular localization is pivotal in understanding a protein's function. Computational prediction of subcellular localization has become a viable alternative to experimental approaches. While current machine learning-based methods yield good prediction accuracy, most of them suffer from two key problems: lack of interpretability and dealing with multiple locations

    Signal peptides and protein localization prediction

    Get PDF

    Refining Protein Subcellular Localization

    Get PDF
    The study of protein subcellular localization is important to elucidate protein function. Even in well-studied organisms such as yeast, experimental methods have not been able to provide a full coverage of localization. The development of bioinformatic predictors of localization can bridge this gap. We have created a Bayesian network predictor called PSLT2 that considers diverse protein characteristics, including the combinatorial presence of InterPro motifs and protein interaction data. We compared the localization predictions of PSLT2 to high-throughput experimental localization datasets. Disagreements between these methods generally involve proteins that transit through or reside in the secretory pathway. We used our multi-compartmental predictions to refine the localization annotations of yeast proteins primarily by distinguishing between soluble lumenal proteins and soluble proteins peripherally associated with organelles. To our knowledge, this is the first tool to provide this functionality. We used these sub-compartmental predictions to characterize cellular processes on an organellar scale. The integration of diverse protein characteristics and protein interaction data in an appropriate setting can lead to high-quality detailed localization annotations for whole proteomes. This type of resource is instrumental in developing models of whole organelles that provide insight into the extent of interaction and communication between organelles and help define organellar functionality

    Evaluation and comparison of mammalian subcellular localization prediction methods

    Get PDF
    BACKGROUND: Determination of the subcellular location of a protein is essential to understanding its biochemical function. This information can provide insight into the function of hypothetical or novel proteins. These data are difficult to obtain experimentally but have become especially important since many whole genome sequencing projects have been finished and many resulting protein sequences are still lacking detailed functional information. In order to address this paucity of data, many computational prediction methods have been developed. However, these methods have varying levels of accuracy and perform differently based on the sequences that are presented to the underlying algorithm. It is therefore useful to compare these methods and monitor their performance. RESULTS: In order to perform a comprehensive survey of prediction methods, we selected only methods that accepted large batches of protein sequences, were publicly available, and were able to predict localization to at least nine of the major subcellular locations (nucleus, cytosol, mitochondrion, extracellular region, plasma membrane, Golgi apparatus, endoplasmic reticulum (ER), peroxisome, and lysosome). The selected methods were CELLO, MultiLoc, Proteome Analyst, pTarget and WoLF PSORT. These methods were evaluated using 3763 mouse proteins from SwissProt that represent the source of the training sets used in development of the individual methods. In addition, an independent evaluation set of 2145 mouse proteins from LOCATE with a bias towards the subcellular localization underrepresented in SwissProt was used. The sensitivity and specificity were calculated for each method and compared to a theoretical value based on what might be observed by random chance. CONCLUSION: No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application to hypothetical proteins. All methods showed lower performance on the LOCATE dataset and variable performance on individual subcellular localizations was observed. Proteins localized to the secretory pathway were the most difficult to predict, while nuclear and extracellular proteins were predicted with the highest sensitivity

    ESLpred2: improved method for predicting subcellular localization of eukaryotic proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The expansion of raw protein sequence databases in the post genomic era and availability of fresh annotated sequences for major localizations particularly motivated us to introduce a new improved version of our previously forged eukaryotic subcellular localizations prediction method namely "ESLpred". Since, subcellular localization of a protein offers essential clues about its functioning, hence, availability of localization predictor would definitely aid and expedite the protein deciphering studies. However, robustness of a predictor is highly dependent on the superiority of dataset and extracted protein attributes; hence, it becomes imperative to improve the performance of presently available method using latest dataset and crucial input features.</p> <p>Results</p> <p>Here, we describe augmentation in the prediction performance obtained for our most popular ESLpred method using new crucial features as an input to Support Vector Machine (SVM). In addition, recently available, highly non-redundant dataset encompassing three kingdoms specific protein sequence sets; 1198 fungi sequences, 2597 from animal and 491 plant sequences were also included in the present study. First, using the evolutionary information in the form of profile composition along with whole and N-terminal sequence composition as an input feature vector of 440 dimensions, overall accuracies of 72.7, 75.8 and 74.5% were achieved respectively after five-fold cross-validation. Further, enhancement in performance was observed when similarity search based results were coupled with whole and N-terminal sequence composition along with profile composition by yielding overall accuracies of 75.9, 80.8, 76.6% respectively; best accuracies reported till date on the same datasets.</p> <p>Conclusion</p> <p>These results provide confidence about the reliability and accurate prediction of SVM modules generated in the present study using sequence and profile compositions along with similarity search based results. The presently developed modules are implemented as web server "ESLpred2" available at <url>http://www.imtech.res.in/raghava/eslpred2/</url>.</p

    A novel approach for protein subcellular location prediction using amino acid exposure

    Get PDF
    BACKGROUND: Proteins perform their functions in associated cellular locations. Therefore, the study of protein function can be facilitated by predictions of protein location. Protein location can be predicted either from the sequence of a protein alone by identification of targeting peptide sequences and motifs, or by homology to proteins of known location. A third approach, which is complementary, exploits the differences in amino acid composition of proteins associated to different cellular locations, and can be useful if motif and homology information are missing. Here we expand this approach taking into account amino acid composition at different levels of amino acid exposure. RESULTS: Our method has two stages. For stage one, we trained multiple Support Vector Machines (SVMs) to score eukaryotic protein sequences for membership to each of three categories: nuclear, cytoplasmic and extracellular, plus extra category nucleocytoplasmic, accounting for the fact that a large number of proteins shuttles between those two locations. In stage two we use an artificial neural network (ANN) to propose a category from the scores given to the four locations in stage one. The method reaches an accuracy of 68% when using as input 3D-derived values of amino acid exposure. Calibration of the method using predicted values of amino acid exposure allows classifying proteins without 3D-information with an accuracy of 62% and discerning proteins in different locations even if they shared high levels of identity. CONCLUSIONS: In this study we explored the relationship between residue exposure and protein subcellular location. We developed a new algorithm for subcellular location prediction that uses residue exposure signatures. Our algorithm uses a novel approach to address the multiclass classification problem. The algorithm is implemented as web server 'NYCE' and can be accessed at http://cbdm.mdc-berlin.de/~amer/nyce
    corecore