768 research outputs found

    Perturbation of the Eigenvectors of the Graph Laplacian: Application to Image Denoising

    Full text link
    The original contributions of this paper are twofold: a new understanding of the influence of noise on the eigenvectors of the graph Laplacian of a set of image patches, and an algorithm to estimate a denoised set of patches from a noisy image. The algorithm relies on the following two observations: (1) the low-index eigenvectors of the diffusion, or graph Laplacian, operators are very robust to random perturbations of the weights and random changes in the connections of the patch-graph; and (2) patches extracted from smooth regions of the image are organized along smooth low-dimensional structures in the patch-set, and therefore can be reconstructed with few eigenvectors. Experiments demonstrate that our denoising algorithm outperforms the denoising gold-standards

    Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario

    Full text link
    A variety of methods is available to quantify uncertainties arising with\-in the modeling of flow and transport in carbon dioxide storage, but there is a lack of thorough comparisons. Usually, raw data from such storage sites can hardly be described by theoretical statistical distributions since only very limited data is available. Hence, exact information on distribution shapes for all uncertain parameters is very rare in realistic applications. We discuss and compare four different methods tested for data-driven uncertainty quantification based on a benchmark scenario of carbon dioxide storage. In the benchmark, for which we provide data and code, carbon dioxide is injected into a saline aquifer modeled by the nonlinear capillarity-free fractional flow formulation for two incompressible fluid phases, namely carbon dioxide and brine. To cover different aspects of uncertainty quantification, we incorporate various sources of uncertainty such as uncertainty of boundary conditions, of conceptual model definitions and of material properties. We consider recent versions of the following non-intrusive and intrusive uncertainty quantification methods: arbitary polynomial chaos, spatially adaptive sparse grids, kernel-based greedy interpolation and hybrid stochastic Galerkin. The performance of each approach is demonstrated assessing expectation value and standard deviation of the carbon dioxide saturation against a reference statistic based on Monte Carlo sampling. We compare the convergence of all methods reporting on accuracy with respect to the number of model runs and resolution. Finally we offer suggestions about the methods' advantages and disadvantages that can guide the modeler for uncertainty quantification in carbon dioxide storage and beyond

    Learning Theory and Approximation

    Get PDF
    Learning theory studies data structures from samples and aims at understanding unknown function relations behind them. This leads to interesting theoretical problems which can be often attacked with methods from Approximation Theory. This workshop - the second one of this type at the MFO - has concentrated on the following recent topics: Learning of manifolds and the geometry of data; sparsity and dimension reduction; error analysis and algorithmic aspects, including kernel based methods for regression and classification; application of multiscale aspects and of refinement algorithms to learning

    Learning Theory and Approximation

    Get PDF
    The main goal of this workshop – the third one of this type at the MFO – has been to blend mathematical results from statistical learning theory and approximation theory to strengthen both disciplines and use synergistic effects to work on current research questions. Learning theory aims at modeling unknown function relations and data structures from samples in an automatic manner. Approximation theory is naturally used for the advancement and closely connected to the further development of learning theory, in particular for the exploration of new useful algorithms, and for the theoretical understanding of existing methods. Conversely, the study of learning theory also gives rise to interesting theoretical problems for approximation theory such as the approximation and sparse representation of functions or the construction of rich kernel reproducing Hilbert spaces on general metric spaces. This workshop has concentrated on the following recent topics: Pitchfork bifurcation of dynamical systems arising from mathematical foundations of cell development; regularized kernel based learning in the Big Data situation; deep learning; convergence rates of learning and online learning algorithms; numerical refinement algorithms to learning; statistical robustness of regularized kernel based learning

    Sparse approximation of multilinear problems with applications to kernel-based methods in UQ

    Full text link
    We provide a framework for the sparse approximation of multilinear problems and show that several problems in uncertainty quantification fit within this framework. In these problems, the value of a multilinear map has to be approximated using approximations of different accuracy and computational work of the arguments of this map. We propose and analyze a generalized version of Smolyak's algorithm, which provides sparse approximation formulas with convergence rates that mitigate the curse of dimension that appears in multilinear approximation problems with a large number of arguments. We apply the general framework to response surface approximation and optimization under uncertainty for parametric partial differential equations using kernel-based approximation. The theoretical results are supplemented by numerical experiments
    • …
    corecore