5 research outputs found

    VLSI design of configurable low-power coarse-grained array architecture

    Get PDF
    Biomedical signal acquisition from in- or on-body sensors often requires local (on-node) low-level pre-processing before the data are sent to a remote node for aggregation and further processing. Local processing is required for many different operations, which include signal cleanup (noise removal), sensor calibration, event detection and data compression. In this environment, processing is subject to aggressive energy consumption restrictions, while often operating under real-time requirements. These conflicting requirements impose the use of dedicated circuits addressing a very specific task or the use of domain-specific customization to obtain significant gains in power efficiency. However, economic and time-to-market constraints often make the development or use of application-specific platforms very risky.One way to address these challenges is to develop a sensor node with a general-purpose architecture combining a low-power, low-performance general microprocessor or micro-controller with a coarse-grained reconfigurable array (CGRA) acting as an accelerator. A CGRA consists of a fixed number of processing units (e.g., ALUs) whose function and interconnections are determined by some configuration data.The objective of this work is to create an RTL-level description of a low-power CGRA of ALUs and produce a low-power VLSI (standard cell) implementation, that supports power-saving features.The CGRA implementation should use as few resources as possible and fully exploit the intended operation environment. The design will be evaluated with a set of simple signal processing task

    Hexarray: A Novel Self-Reconfigurable Hardware System

    Get PDF
    Evolvable hardware (EHW) is a powerful autonomous system for adapting and finding solutions within a changing environment. EHW consists of two main components: a reconfigurable hardware core and an evolutionary algorithm. The majority of prior research focuses on improving either the reconfigurable hardware or the evolutionary algorithm in place, but not both. Thus, current implementations suffer from being application oriented and having slow reconfiguration times, low efficiencies, and less routing flexibility. In this work, a novel evolvable hardware platform is proposed that combines a novel reconfigurable hardware core and a novel evolutionary algorithm. The proposed reconfigurable hardware core is a systolic array, which is called HexArray. HexArray was constructed using processing elements with a redesigned architecture, called HexCells, which provide routing flexibility and support for hybrid reconfiguration schemes. The improved evolutionary algorithm is a genome-aware genetic algorithm (GAGA) that accelerates evolution. Guided by a fitness function the GAGA utilizes context-aware genetic operators to evolve solutions. The operators are genome-aware constrained (GAC) selection, genome-aware mutation (GAM), and genome-aware crossover (GAX). The GAC selection operator improves parallelism and reduces the redundant evaluations. The GAM operator restricts the mutation to the part of the genome that affects the selected output. The GAX operator cascades, interleaves, or parallel-recombines genomes at the cell level to generate better genomes. These operators improve evolution while not limiting the algorithm from exploring all areas of a solution space. The system was implemented on a SoC that includes a programmable logic (i.e., field-programmable gate array) to realize the HexArray and a processing system to execute the GAGA. A computationally intensive application that evolves adaptive filters for image processing was chosen as a case study and used to conduct a set of experiments to prove the developed system robustness. Through an iterative process using the genetic operators and a fitness function, the EHW system configures and adapts itself to evolve fitter solutions. In a relatively short time (e.g., seconds), HexArray is able to evolve autonomously to the desired filter. By exploiting the routing flexibility in the HexArray architecture, the EHW has a simple yet effective mechanism to detect and tolerate faulty cells, which improves system reliability. Finally, a mechanism that accelerates the evolution process by hiding the reconfiguration time in an “evolve-while-reconfigure” process is presented. In this process, the GAGA utilizes the array routing flexibility to bypass cells that are being configured and evaluates several genomes in parallel
    corecore