98,774 research outputs found

    Undetachable threshold signatures

    Get PDF
    A major problem of mobile agents is their inability to authenticate transactions in a hostile environment. Users will not wish to equip agents with their private signature keys when the agents may execute on untrusted platforms. Undetachable signatures were introduced to solve this problem by allowing users to equip agents with the means to sign signatures for tightly constrained transactions, using information especially derived from the user private signature key. However, the problem remains that a platform can force an agent to commit to a sub-optimal transaction. In parallel with the work on undetachable signatures, much work has been performed on threshold signature schemes, which allow signing power to be distributed across multiple agents, thereby reducing the trust in a single entity. We combine these notions and introduce the concept of an undetachable threshold signature scheme, which enables constrained signing power to be distributed across multiple agents, thus reducing the necessary trust in single agent platforms. We also provide an RSA-based example of such a scheme based on a combination of Shoup's threshold signature scheme, [7] and Kotzanikolaou et al's undetachable signature scheme, [3]

    Bounded Distributed Flocking Control of Nonholonomic Mobile Robots

    Full text link
    There have been numerous studies on the problem of flocking control for multiagent systems whose simplified models are presented in terms of point-mass elements. Meanwhile, full dynamic models pose some challenging problems in addressing the flocking control problem of mobile robots due to their nonholonomic dynamic properties. Taking practical constraints into consideration, we propose a novel approach to distributed flocking control of nonholonomic mobile robots by bounded feedback. The flocking control objectives consist of velocity consensus, collision avoidance, and cohesion maintenance among mobile robots. A flocking control protocol which is based on the information of neighbor mobile robots is constructed. The theoretical analysis is conducted with the help of a Lyapunov-like function and graph theory. Simulation results are shown to demonstrate the efficacy of the proposed distributed flocking control scheme

    Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators

    Full text link
    This paper presents a solution based on dual quaternion algebra to the general problem of pose (i.e., position and orientation) consensus for systems composed of multiple rigid-bodies. The dual quaternion algebra is used to model the agents' poses and also in the distributed control laws, making the proposed technique easily applicable to time-varying formation control of general robotic systems. The proposed pose consensus protocol has guaranteed convergence when the interaction among the agents is represented by directed graphs with directed spanning trees, which is a more general result when compared to the literature on formation control. In order to illustrate the proposed pose consensus protocol and its extension to the problem of formation control, we present a numerical simulation with a large number of free-flying agents and also an application of cooperative manipulation by using real mobile manipulators
    • …
    corecore