1,384 research outputs found

    SQL Injection Detection Using Machine Learning Techniques and Multiple Data Sources

    Get PDF
    SQL Injection continues to be one of the most damaging security exploits in terms of personal information exposure as well as monetary loss. Injection attacks are the number one vulnerability in the most recent OWASP Top 10 report, and the number of these attacks continues to increase. Traditional defense strategies often involve static, signature-based IDS (Intrusion Detection System) rules which are mostly effective only against previously observed attacks but not unknown, or zero-day, attacks. Much current research involves the use of machine learning techniques, which are able to detect unknown attacks, but depending on the algorithm can be costly in terms of performance. In addition, most current intrusion detection strategies involve collection of traffic coming into the web application either from a network device or from the web application host, while other strategies collect data from the database server logs. In this project, we are collecting traffic from two points: the web application host, and a Datiphy appliance node located between the webapp host and the associated MySQL database server. In our analysis of these two datasets, and another dataset that is correlated between the two, we have been able to demonstrate that accuracy obtained with the correlated dataset using algorithms such as rule-based and decision tree are nearly the same as those with a neural network algorithm, but with greatly improved performance

    A Multilayer Approach for Intrusion Detection with Lightweight Multilayer Perceptron and LSTM Deep Learning Models

    Get PDF
    Intrusion detection is essential in the field of cybersecurity for protecting networks and computer systems from nefarious activity. We suggest a novel multilayer strategy that combines the strength of the Lightweight Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) deep learning models in order to improve the precision and effectiveness of intrusion detection.The initial layer for extraction of features and representation is the Lightweight MLP. Its streamlined architecture allows for quick network data processing while still maintaining competitive performance. The LSTM deep learning model, which is excellent at identifying temporal correlations and patterns in sequential data, receives the extracted features after that.Our multilayer technique successfully manages the highly dimensional and dynamic nature of data from networks by merging these two models. We undertake extensive tests on benchmark datasets, and the outcomes show that our strategy performs better than conventional single-model intrusion detection techniques.The suggested multilayer method also demonstrates outstanding efficiency, which makes it particularly ideal for real-time intrusion detection in expansive network environments. Our multilayer approach offers a strong and dependable solution for identifying and reducing intrusions, strengthening the security position of computer systems and networks as cyber threats continue to advance

    Evaluation of Machine Learning Algorithms for Intrusion Detection System

    Full text link
    Intrusion detection system (IDS) is one of the implemented solutions against harmful attacks. Furthermore, attackers always keep changing their tools and techniques. However, implementing an accepted IDS system is also a challenging task. In this paper, several experiments have been performed and evaluated to assess various machine learning classifiers based on KDD intrusion dataset. It succeeded to compute several performance metrics in order to evaluate the selected classifiers. The focus was on false negative and false positive performance metrics in order to enhance the detection rate of the intrusion detection system. The implemented experiments demonstrated that the decision table classifier achieved the lowest value of false negative while the random forest classifier has achieved the highest average accuracy rate

    Machine Learning for Cyberattack Detection

    Get PDF
    Machine learning has become rapidly utilized in cybersecurity, rising from almost non-existent to currently over half of cybersecurity techniques utilized commercially. Machine learning is advancing at a rapid rate, and the application of new learning techniques to cybersecurity have not been investigate yet. Current technology trends have led to an abundance of household items containing microprocessors all connected within a private network. Thus, network intrusion detection is essential for keeping these networks secure. However, network intrusion detection can be extremely taxing on battery operated devices. The presented work presents a cyberattack detection system based on a multilayer perceptron neural network algorithm. To show that this system can operate at low power, the algorithm was executed on two commercially available minicomputer systems including the Raspberry PI 3 and the Asus Tinkerboard. An analysis of accuracy, power, energy, and timing was performed to study the tradeoffs necessary when executing these algorithms at low power. Our results show that these low power implementations are feasible, and a scan rate of more than 226,000 packets per second can be achieved from a system that requires approximately 5W to operate with greater than 99% accuracy

    A Review on Cybersecurity based on Machine Learning and Deep Learning Algorithms

    Get PDF
    Machin learning (ML) and Deep Learning (DL) technique have been widely applied to areas like image processing and speech recognition so far. Likewise, ML and DL plays a critical role in detecting and preventing in the field of cybersecurity. In this review, we focus on recent ML and DL algorithms that have been proposed in cybersecurity, network intrusion detection, malware detection. We also discuss key elements of cybersecurity, main principle of information security and the most common methods used to threaten cybersecurity. Finally, concluding remarks are discussed including the possible research topics that can be taken into consideration to enhance various cyber security applications using DL and ML algorithms
    corecore