292 research outputs found

    Capturing and Scaffolding the Complexities of Self-Regulation During Game-Based Learning

    Get PDF
    Game-based learning environments (GBLEs) can offer students with engaging interactive instructional materials while also providing a research platform to investigate the dynamics and intricacies of effective self-regulated learning (SRL). Past research has indicated learners are often unable to monitor and regulate their cognitive and metacognitive processes within GBLEs accurately and effectively on their own due mostly to the open-ended nature of these environments. The future design and development of GBLEs and embedded scaffolds, therefore, require a better understanding of the discrepancies between the affordances of GBLEs and the required use of SRL. Specifically, how to incorporate interdisciplinary theories and concepts outside of traditional educational, learning, and psychological sciences literature, how to utilize process data to measure SRL processes during interactions with instructional materials accounting for the dynamics of leaners\u27 SRL, and how to improve SRL-driven scaffolds to be individualized and adaptive based on the level of agency GBLEs provide. Across four studies, this dissertation investigates learners\u27 SRL while they learn about microbiology using CRYSTAL ISLAND, a GBLE, building upon each other by enhancing the type of data collected, analytical methodologies used, and applied theoretical models and theories. Specifically, this dissertation utilizes a combination of traditional statistical approaches (i.e., linear regression models), non-linear statistical approaches (i.e., growth modeling), and non-linear dynamical theory (NDST) approaches (aRQA) with process trace data to contribute to the field\u27s current understanding of the dynamics and complexities of SRL. Furthermore, this dissertation examines how limited agency can act as an implicit scaffold during game-based learning to promote the use of SRL processes and increase learning outcomes

    Leveraging Multimodal Learning Analytics to Understand How Humans Learn with Emerging Technologies

    Get PDF
    Major education and training challenges are plaguing the United States in preparing the next generation of the future workforce to meet the demands of the 21st Century. Several calls have been released to improve education programs to ensure learners are acquiring 21st century knowledge, skills, and abilities (KSAs). As we embark on the digital and automation ages of the 21st century, it is essential that we move away from traditional education programs that define and measure KSAs as static constructs (e.g., standardized assessments) with little consideration of the actual real-time deployment of these processes, missing critical information on the degree to which learners are acquiring and applying 21st century KSAs. The objective of this dissertation is to use 1 book chapter and 2 journal articles to illustrate the value in leveraging emerging technologies and multimodal trace data to define and measure scientific thinking, reflection, and self-regulated learning--core 21st century skills, across contexts, domains, tasks, and populations (e.g., medical versus undergraduates versus middle-school students). Chapters 2-4 of this dissertation provide evidence of ways to leverage multimodal trace data guided by theoretical perspectives in cognitive and learning sciences, with a special focus in self-regulated learning, to assess the extent to which learners engaged in scientific thinking, reflection, and self-regulated learning during learning activities with emerging technologies. Overall, results from these chapters illustrate that it is necessary to utilize methods that capture learning processes as they unfold during learning activities that are guided by theoretical perspectives in self-regulated learning. Findings from this research hold significant broader impacts for addressing the education and training challenges in the United States by collecting multimodal trace data over the course of learning to not only detect and identify how learners are developing KSAs such as scientific thinking, reflection, and self-regulated learning, but where these data could be fed into an intelligent and adaptive system to repurpose it back to trainers, teachers, instructors, and learners for just-in-time interventions and individualized feedback. The intellectual merit of this dissertation focuses predominantly on the importance of utilizing rich streams of multimodal trace data that are mapped onto different theoretical perspectives on how humans self-regulate across tasks like clinical reasoning, scientific thinking, and reflection with emerging technologies such as a game-based learning environment called Crystal Island. Discussion is incorporated around ways to leverage multimodal trace data on undergraduate, middle-school, and medical student populations across a range of tasks including learning about microbiology to problem solving with a game-based learning environment called Crystal Island and clinically reasoning about diagnoses across emerging technologies

    Towards investigating the validity of measurement of self-regulated learning based on trace data

    Get PDF
    Contains fulltext : 250033.pdf (Publisher’s version ) (Open Access)Contemporary research that looks at self-regulated learning (SRL) as processes of learning events derived from trace data has attracted increasing interest over the past decade. However, limited research has been conducted that looks into the validity of trace-based measurement protocols. In order to fill this gap in the literature, we propose a novel validation approach that combines theory-driven and data-driven perspectives to increase the validity of interpretations of SRL processes extracted from trace-data. The main contribution of this approach consists of three alignments between trace data and think aloud data to improve measurement validity. In addition, we define the match rate between SRL processes extracted from trace data and think aloud as a quantitative indicator together with other three indicators (sensitivity, specificity and trace coverage), to evaluate the "degree" of validity. We tested this validation approach in a laboratory study that involved 44 learners who learned individually about the topic of artificial intelligence in education with the use of a technology-enhanced learning environment for 45 minutes. Following this new validation approach, we achieved an improved match rate between SRL processes extracted from trace-data and think aloud data (training set: 54.24%; testing set: 55.09%) compared to the match rate before applying the validation approach (training set: 38.97%; test set: 34.54%). By considering think aloud data as "reference point", this improvement of the match rate quantified the extent to which validity can be improved by using our validation approach. In conclusion, the novel validation approach presented in this study used both empirical evidence from think aloud data and rationale from our theoretical framework of SRL, which now, allows testing and improvement of the validity of trace-based SRL measurements.39 p

    Analyse visuelle et cérébrale de l’état cognitif d’un apprenant

    Get PDF
    Un état cognitif peut se définir comme étant l’ensemble des processus cognitifs inférieurs (par exemple : perception et attention) et supérieurs (par exemple : prise de décision et raisonnement), nécessitant de la part de l’être humain toutes ses capacités mentales en vue d’utiliser des connaissances existantes pour résoudre un problème donné ou bien d’établir de nouvelles connaissances. Dans ce contexte, une attention particulière est portée par les environnements d’apprentissage informatisés sur le suivi et l’analyse des réactions émotionnelles de l’apprenant lors de l’activité d’apprentissage. En effet, les émotions conditionnent l’état mental de l’apprenant qui a un impact direct sur ses capacités cognitives tel que le raisonnement, la prise de décision, la mémorisation, etc. Dans ce contexte, l’objectif est d’améliorer les capacités cognitives de l’apprenant en identifiant et corrigeant les états mentaux défavorables à l’apprentissage en vue d’optimiser les performances des apprenants. Dans cette thèse, nous visons en particulier à examiner le raisonnement en tant que processus cognitif complexe de haut niveau. Notre objectif est double : en premier lieu, nous cherchons à évaluer le processus de raisonnement des étudiants novices en médecine à travers leur comportement visuel et en deuxième lieu, nous cherchons à analyser leur état mental quand ils raisonnent afin de détecter des indicateurs visuels et cérébraux permettant d’améliorer l’expérience d’apprentissage. Plus précisément, notre premier objectif a été d’utiliser les mouvements des yeux de l’apprenant pour évaluer son processus de raisonnement lors d’interactions avec des jeux sérieux éducatifs. Pour ce faire, nous avons analysé deux types de mesures oculaires à savoir : des mesures statiques et des mesures dynamiques. Dans un premier temps, nous avons étudié la possibilité d’identifier automatiquement deux classes d’apprenants à partir des différentes mesures statiques, à travers l’entrainement d’algorithmes d’apprentissage machine. Ensuite, en utilisant les mesures dynamiques avec un algorithme d’alignement de séquences issu de la bio-informatique, nous avons évalué la séquence logique visuelle suivie par l’apprenant en cours de raisonnement pour vérifier s’il est en train de suivre le bon processus de raisonnement ou non. Notre deuxième objectif a été de suivre l’évolution de l’état mental d’engagement d’un apprenant à partir de son activité cérébrale et aussi d’évaluer la relation entre l’engagement et les performances d’apprentissage. Pour cela, une étude a été réalisée où nous avons analysé la distribution de l’indice d’engagement de l’apprenant à travers tout d’abord les différentes phases de résolution du problème donné et deuxièmement, à travers les différentes régions qui composent l’interface de l’environnement. L’activité cérébrale de chaque participant a été mesurée tout au long de l’interaction avec l’environnement. Ensuite, à partir des signaux obtenus, un indice d’engagement a été calculé en se basant sur les trois bandes de fréquences α, β et θ. Enfin, notre troisième objectif a été de proposer une approche multimodale à base de deux senseurs physiologiques pour permettre une analyse conjointe du comportement visuel et cérébral de l’apprenant. Nous avons à cette fin enregistré les mouvements des yeux et l’activité cérébrale de l’apprenant afin d’évaluer son processus de raisonnement durant la résolution de différents exercices cognitifs. Plus précisément, nous visons à déterminer quels sont les indicateurs clés de performances à travers un raisonnement clinique en vue de les utiliser pour améliorer en particulier, les capacités cognitives des apprenants novices et en général, l’expérience d’apprentissage.A cognitive state can be defined as a set of inferior (e.g. perception and attention) and superior (e.g. perception and attention) cognitive processes, requiring the human being to have all of his mental abilities in an effort to use existing knowledge to solve a given problem or to establish new knowledge. In this context, a particular attention is paid by computer-based learning environments to monitor and assess learner’s emotional reactions during a learning activity. In fact, emotions govern the learner’s mental state that has in turn a direct impact on his cognitive abilities such as reasoning, decision-making, memory, etc. In this context, the objective is to improve the cognitive abilities of the learner by identifying and redressing the mental states that are unfavorable to learning in order to optimize the learners’ performances. In this thesis, we aim in particular to examine the reasoning as a high-level cognitive process. Our goal is two-fold: first, we seek to evaluate the reasoning process of novice medical students through their visual behavior and second, we seek to analyze learners’ mental states when reasoning to detect visual and cerebral indicators that can improve learning outcomes. More specifically, our first objective was to use the learner’s eye movements to assess his reasoning process while interacting with educational serious games. For this purpose, we have analyzed two types of ocular metrics namely, static metrics and dynamic metrics. First of all, we have studied the feasibility of using static metrics to automatically identify two groups of learners through the training of machine learning algorithms. Then, we have assessed the logical visual sequence followed by the learner when reasoning using dynamic metrics and a sequence alignment method from bio-informatics to see if he/she performed the correct reasoning process or not. Our second objective was to analyze the evolution of the learner’s engagement mental state from his brain activity and to assess the relationship between engagement and learning performance. An experimental study was conducted where we analyzed the distribution of the learner engagement index through first, the different phases of the problem-solving task and second, through the different regions of the environment interface. The cerebral activity of each participant was recorded during the whole game interaction. Then, from the obtained signals, an engagement index was computed based on the three frequency bands α, β et θ. Finally, our third objective was to propose a multimodal approach based on two physiological sensors to provide a joint analysis of the learner’s visual and cerebral behaviors. To this end, we recorded eye movements and brain activity of the learner to assess his reasoning process during the resolution of different cognitive tasks. More precisely, we aimed to identify key indicators of reasoning performance in order to use them to improve the cognitive abilities of novice learners in particular, and the learning experience in general

    Retrieval-, Distributed-, and Interleaved Practice in the Classroom:A Systematic Review

    Get PDF
    Three of the most effective learning strategies identified are retrieval practice, distributed practice, and interleaved practice, also referred to as desirable difficulties. However, it is yet unknown to what extent these three practices foster learning in primary and secondary education classrooms (as opposed to the laboratory and/or tertiary education classrooms, where most research is conducted) and whether these strategies affect different students differently. To address these gaps, we conducted a systematic review. Initial and detailed screening of 869 documents found in a threefold search resulted in a pool of 29 journal articles published from 2006 through June 2020. Seventy-five effect sizes nested in 47 experiments nested in 29 documents were included in the review. Retrieval- and interleaved practice appeared to benefit students’ learning outcomes quite consistently; distributed practice less so. Furthermore, only cognitive Student*Task characteristics (i.e., features of the student’s cognition regarding the task, such as initial success) appeared to be significant moderators. We conclude that future research further conceptualising and operationalising initial effort is required, as is a differentiated approach to implementing desirable difficulties

    AI in Learning: Designing the Future

    Get PDF
    AI (Artificial Intelligence) is predicted to radically change teaching and learning in both schools and industry causing radical disruption of work. AI can support well-being initiatives and lifelong learning but educational institutions and companies need to take the changing technology into account. Moving towards AI supported by digital tools requires a dramatic shift in the concept of learning, expertise and the businesses built off of it. Based on the latest research on AI and how it is changing learning and education, this book will focus on the enormous opportunities to expand educational settings with AI for learning in and beyond the traditional classroom. This open access book also introduces ethical challenges related to learning and education, while connecting human learning and machine learning. This book will be of use to a variety of readers, including researchers, AI users, companies and policy makers

    AI in Learning: Designing the Future

    Get PDF
    AI (Artificial Intelligence) is predicted to radically change teaching and learning in both schools and industry causing radical disruption of work. AI can support well-being initiatives and lifelong learning but educational institutions and companies need to take the changing technology into account. Moving towards AI supported by digital tools requires a dramatic shift in the concept of learning, expertise and the businesses built off of it. Based on the latest research on AI and how it is changing learning and education, this book will focus on the enormous opportunities to expand educational settings with AI for learning in and beyond the traditional classroom. This open access book also introduces ethical challenges related to learning and education, while connecting human learning and machine learning. This book will be of use to a variety of readers, including researchers, AI users, companies and policy makers

    Attention Restraint, Working Memory Capacity, and Mind Wandering: Do Emotional Valence or Intentionality Matter?

    Get PDF
    Attention restraint appears to mediate the relationship between working memory capacity (WMC) and mind wandering (Kane et al., 2016). Prior work has identifed two dimensions of mind wandering—emotional valence and intentionality. However, less is known about how WMC and attention restraint correlate with these dimensions. Te current study examined the relationship between WMC, attention restraint, and mind wandering by emotional valence and intentionality. A confrmatory factor analysis demonstrated that WMC and attention restraint were strongly correlated, but only attention restraint was related to overall mind wandering, consistent with prior fndings. However, when examining the emotional valence of mind wandering, attention restraint and WMC were related to negatively and positively valenced, but not neutral, mind wandering. Attention restraint was also related to intentional but not unintentional mind wandering. Tese results suggest that WMC and attention restraint predict some, but not all, types of mind wandering

    The effect of structuring versus reflection-provoking support on students' shared metacognitive regulation

    Get PDF
    • …
    corecore