3,164 research outputs found

    Spatio-Temporal Wildfire Prediction using Multi-Modal Data

    Full text link
    Due to severe societal and environmental impacts, wildfire prediction using multi-modal sensing data has become a highly sought-after data-analytical tool by various stakeholders (such as state governments and power utility companies) to achieve a more informed understanding of wildfire activities and plan preventive measures. A desirable algorithm should precisely predict fire risk and magnitude for a location in real time. In this paper, we develop a flexible spatio-temporal wildfire prediction framework using multi-modal time series data. We first predict the wildfire risk (the chance of a wildfire event) in real-time, considering the historical events using discrete mutually exciting point process models. Then we further develop a wildfire magnitude prediction set method based on the flexible distribution-free time-series conformal prediction (CP) approach. Theoretically, we prove a risk model parameter recovery guarantee, as well as coverage and set size guarantees for the CP sets. Through extensive real-data experiments with wildfire data in California, we demonstrate the effectiveness of our methods, as well as their flexibility and scalability in large regions

    Mixed-attitude three-way decision model for aerial targets: Threat assessment based on IF-VIKOR-GRA method

    Get PDF
    Assessing potential threats typically necessitates the use of a robust mathematical model, a comprehensive evaluation method and universal decision rules. A novel approach is utilized in this study to optimize existing threat assessment (TA) algorithms and three-way decision models (3WDMs) are leveraged that incorporate decision-theoretic rough sets (DTRSs) within dynamic intuitionistic fuzzy (IF) environments to create a mixed-attitude 3WDM based on the IF-VIKOR-GRA method in the context of aviation warfare. The primary objectives of this study include determining conditional probabilities for IF three-way decisions (3WDs) and establishing mixed-attitude decision thresholds. Both the target attribute and loss function are expressed in the form of intuitionistic fuzzy numbers (IFNs). To calculate these conditional probabilities, an IF technique is used to combine the multi-attribute decision-making (MADM) method VIKOR and the grey relational analysis (GRA) method, while also taking into account the risk-related preferences of decision-makers (DMs). Optimistic and pessimistic 3WDMs are developed from the perspectives of membership degree and non-membership degree, then subsequently integrated into the comprehensive mixed-attitude 3WDM. The feasibility and effectiveness of this methodology are demonstrated through a numerical example and by comparison to other existing approaches

    Inferring Complex Activities for Context-aware Systems within Smart Environments

    Get PDF
    The rising ageing population worldwide and the prevalence of age-related conditions such as physical fragility, mental impairments and chronic diseases have significantly impacted the quality of life and caused a shortage of health and care services. Over-stretched healthcare providers are leading to a paradigm shift in public healthcare provisioning. Thus, Ambient Assisted Living (AAL) using Smart Homes (SH) technologies has been rigorously investigated to help address the aforementioned problems. Human Activity Recognition (HAR) is a critical component in AAL systems which enables applications such as just-in-time assistance, behaviour analysis, anomalies detection and emergency notifications. This thesis is aimed at investigating challenges faced in accurately recognising Activities of Daily Living (ADLs) performed by single or multiple inhabitants within smart environments. Specifically, this thesis explores five complementary research challenges in HAR. The first study contributes to knowledge by developing a semantic-enabled data segmentation approach with user-preferences. The second study takes the segmented set of sensor data to investigate and recognise human ADLs at multi-granular action level; coarse- and fine-grained action level. At the coarse-grained actions level, semantic relationships between the sensor, object and ADLs are deduced, whereas, at fine-grained action level, object usage at the satisfactory threshold with the evidence fused from multimodal sensor data is leveraged to verify the intended actions. Moreover, due to imprecise/vague interpretations of multimodal sensors and data fusion challenges, fuzzy set theory and fuzzy web ontology language (fuzzy-OWL) are leveraged. The third study focuses on incorporating uncertainties caused in HAR due to factors such as technological failure, object malfunction, and human errors. Hence, existing studies uncertainty theories and approaches are analysed and based on the findings, probabilistic ontology (PR-OWL) based HAR approach is proposed. The fourth study extends the first three studies to distinguish activities conducted by more than one inhabitant in a shared smart environment with the use of discriminative sensor-based techniques and time-series pattern analysis. The final study investigates in a suitable system architecture with a real-time smart environment tailored to AAL system and proposes microservices architecture with sensor-based off-the-shelf and bespoke sensing methods. The initial semantic-enabled data segmentation study was evaluated with 100% and 97.8% accuracy to segment sensor events under single and mixed activities scenarios. However, the average classification time taken to segment each sensor events have suffered from 3971ms and 62183ms for single and mixed activities scenarios, respectively. The second study to detect fine-grained-level user actions was evaluated with 30 and 153 fuzzy rules to detect two fine-grained movements with a pre-collected dataset from the real-time smart environment. The result of the second study indicate good average accuracy of 83.33% and 100% but with the high average duration of 24648ms and 105318ms, and posing further challenges for the scalability of fusion rule creations. The third study was evaluated by incorporating PR-OWL ontology with ADL ontologies and Semantic-Sensor-Network (SSN) ontology to define four types of uncertainties presented in the kitchen-based activity. The fourth study illustrated a case study to extended single-user AR to multi-user AR by combining RFID tags and fingerprint sensors discriminative sensors to identify and associate user actions with the aid of time-series analysis. The last study responds to the computations and performance requirements for the four studies by analysing and proposing microservices-based system architecture for AAL system. A future research investigation towards adopting fog/edge computing paradigms from cloud computing is discussed for higher availability, reduced network traffic/energy, cost, and creating a decentralised system. As a result of the five studies, this thesis develops a knowledge-driven framework to estimate and recognise multi-user activities at fine-grained level user actions. This framework integrates three complementary ontologies to conceptualise factual, fuzzy and uncertainties in the environment/ADLs, time-series analysis and discriminative sensing environment. Moreover, a distributed software architecture, multimodal sensor-based hardware prototypes, and other supportive utility tools such as simulator and synthetic ADL data generator for the experimentation were developed to support the evaluation of the proposed approaches. The distributed system is platform-independent and currently supported by an Android mobile application and web-browser based client interfaces for retrieving information such as live sensor events and HAR results

    Information fusion from multiple databases using meta-association rules

    Get PDF
    Nowadays, data volume, distribution, and volatility make it difficult to search global patterns by applying traditional Data Mining techniques. In the case of data in a distributed environment, sometimes a local analysis of each dataset separately is adequate but some other times a global decision is needed by the analysis of the entire data. Association rules discovering methods typically require a single uniform dataset and managing with the entire set of distributed data is not possible due to its size. To address the scenarios in which satisfying this requirement is not practical or even feasible, we propose a new method for fusing information, in the form of rules, extracted from multiple datasets. The proposed model produces meta-association rules, i.e. rules in which the antecedent or the consequent may contain rules as well, for finding joint correlations among trends found individually in each dataset. In this paper, we describe the formulation and the implementation of two alternative frameworks that obtain, respectively, crisp meta-rules and fuzzy meta-rules. We compare our proposal with the information obtained when the datasets are not separated, in order to see the main differences between traditional association rules and meta-association rules. We also compare crisp and fuzzy methods for meta-association rule mining, observing that the fuzzy approach offers several advantages: it is more accurate since it incorporates the strength or validity of the previous information, produces a more manageable set of rules for human inspection, and allows the incorporation of contextual information to the mining process expressed in a more human-friendly format

    Clustering framework to identify traffic conflicts and determine thresholds based on trajectory data

    Full text link
    Traffic conflict indicators are essential for evaluating traffic safety and analyzing trajectory data, especially in the absence of crash data. Previous studies have used traffic conflict indicators to predict and identify conflicts, including time-to-collision (TTC), proportion of stopping distance (PSD), and deceleration rate to avoid a crash (DRAC). However, limited research is conducted to understand how to set thresholds for these indicators while accounting for traffic flow characteristics at different traffic states. This paper proposes a clustering framework for determining surrogate safety measures (SSM) thresholds and identifying traffic conflicts in different traffic states using high-resolution trajectory data from the Citysim dataset. In this study, unsupervised clustering is employed to identify different traffic states and their transitions under a three-phase theory framework. The resulting clusters can then be utilized in conjunction with surrogate safety measures (SSM) to identify traffic conflicts and assess safety performance in each traffic state. From different perspectives of time, space, and deceleration, we chose three compatible conflict indicators: TTC, DRAC, and PSD, considering functional differences and empirical correlations of different SSMs. A total of three models were chosen by learning these indicators to identify traffic conflict and non-conflict clusters. It is observed that Mclust outperforms the other two. The results show that the distribution of traffic conflicts varies significantly across traffic states. A wide moving jam (J) is found to be the phase with largest amount of conflicts, followed by synchronized flow phase (S) and free flow phase(F). Meanwhile, conflict risk and thresholds exhibit similar levels across transitional states

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers
    corecore