34,626 research outputs found

    Prochlo: Strong Privacy for Analytics in the Crowd

    Full text link
    The large-scale monitoring of computer users' software activities has become commonplace, e.g., for application telemetry, error reporting, or demographic profiling. This paper describes a principled systems architecture---Encode, Shuffle, Analyze (ESA)---for performing such monitoring with high utility while also protecting user privacy. The ESA design, and its Prochlo implementation, are informed by our practical experiences with an existing, large deployment of privacy-preserving software monitoring. (cont.; see the paper

    XYZ Privacy

    Full text link
    Future autonomous vehicles will generate, collect, aggregate and consume significant volumes of data as key gateway devices in emerging Internet of Things scenarios. While vehicles are widely accepted as one of the most challenging mobility contexts in which to achieve effective data communications, less attention has been paid to the privacy of data emerging from these vehicles. The quality and usability of such privatized data will lie at the heart of future safe and efficient transportation solutions. In this paper, we present the XYZ Privacy mechanism. XYZ Privacy is to our knowledge the first such mechanism that enables data creators to submit multiple contradictory responses to a query, whilst preserving utility measured as the absolute error from the actual original data. The functionalities are achieved in both a scalable and secure fashion. For instance, individual location data can be obfuscated while preserving utility, thereby enabling the scheme to transparently integrate with existing systems (e.g. Waze). A new cryptographic primitive Function Secret Sharing is used to achieve non-attributable writes and we show an order of magnitude improvement from the default implementation.Comment: arXiv admin note: text overlap with arXiv:1708.0188

    A threshold secure data sharing scheme for federated clouds

    Full text link
    Cloud computing allows users to view computing in a new direction, as it uses the existing technologies to provide better IT services at low-cost. To offer high QOS to customers according SLA, cloud services broker or cloud service provider uses individual cloud providers that work collaboratively to form a federation of clouds. It is required in applications like Real-time online interactive applications, weather research and forecasting etc., in which the data and applications are complex and distributed. In these applications secret data should be shared, so secure data sharing mechanism is required in Federated clouds to reduce the risk of data intrusion, the loss of service availability and to ensure data integrity. So In this paper we have proposed zero knowledge data sharing scheme where Trusted Cloud Authority (TCA) will control federated clouds for data sharing where the secret to be exchanged for computation is encrypted and retrieved by individual cloud at the end. Our scheme is based on the difficulty of solving the Discrete Logarithm problem (DLOG) in a finite abelian group of large prime order which is NP-Hard. So our proposed scheme provides data integrity in transit, data availability when one of host providers are not available during the computation.Comment: 8 pages, 3 Figures, International Journal of Research in Computer Science 2012. arXiv admin note: text overlap with arXiv:1003.3920 by other author
    • …
    corecore