665 research outputs found

    Data-driven robotic manipulation of cloth-like deformable objects : the present, challenges and future prospects

    Get PDF
    Manipulating cloth-like deformable objects (CDOs) is a long-standing problem in the robotics community. CDOs are flexible (non-rigid) objects that do not show a detectable level of compression strength while two points on the article are pushed towards each other and include objects such as ropes (1D), fabrics (2D) and bags (3D). In general, CDOs’ many degrees of freedom (DoF) introduce severe self-occlusion and complex state–action dynamics as significant obstacles to perception and manipulation systems. These challenges exacerbate existing issues of modern robotic control methods such as imitation learning (IL) and reinforcement learning (RL). This review focuses on the application details of data-driven control methods on four major task families in this domain: cloth shaping, knot tying/untying, dressing and bag manipulation. Furthermore, we identify specific inductive biases in these four domains that present challenges for more general IL and RL algorithms.Publisher PDFPeer reviewe

    Survey on model-based manipulation planning of deformable objects

    Get PDF
    A systematic overview on the subject of model-based manipulation planning of deformable objects is presented. Existing modelling techniques of volumetric, planar and linear deformable objects are described, emphasizing the different types of deformation. Planning strategies are categorized according to the type of manipulation goal: path planning, folding/unfolding, topology modifications and assembly. Most current contributions fit naturally into these categories, and thus the presented algorithms constitute an adequate basis for future developments.Preprin

    DeRi-IGP: Manipulating Rigid Objects Using Deformable Objects via Iterative Grasp-Pull

    Full text link
    Heterogeneous systems manipulation, i.e., manipulating rigid objects via deformable (soft) objects, is an emerging field that remains in its early stages of research. Existing works in this field suffer from limited action and operational space, poor generalization ability, and expensive development. To address these challenges, we propose a universally applicable and effective moving primitive, Iterative Grasp-Pull (IGP), and a sample-based framework, DeRi-IGP, to solve the heterogeneous system manipulation task. The DeRi-IGP framework uses local onboard robots' RGBD sensors to observe the environment, comprising a soft-rigid body system. It then uses this information to iteratively grasp and pull a soft body (e.g., rope) to move the attached rigid body to a desired location. We evaluate the effectiveness of our framework in solving various heterogeneous manipulation tasks and compare its performance with several state-of-the-art baselines. The result shows that DeRi-IGP outperforms other methods by a significant margin. In addition, we also demonstrate the advantage of the large operational space of IGP in the long-distance object acquisition task within both simulated and real environments

    Robotic Picking of Tangle-prone Materials (with Applications to Agriculture).

    Get PDF
    The picking of one or more objects from an unsorted pile continues to be non-trivial for robotic systems. This is especially so when the pile consists of individual items that tangle with one another, causing more to be picked out than desired. One of the key features of such tangling-prone materials (e.g., herbs, salads) is the presence of protrusions (e.g., leaves) extending out from the main body of items in the pile.This thesis explores the issue of picking excess mass due to entanglement such as occurs in bins composed of tangling-prone materials (TPs), especially in the context of a one-shot mass-constrained robotic bin-picking task. Specifically, it proposes a human-inspired entanglement reduction method for making the picking of TPs more predictable. The primary approach is to directly counter entanglement through pile interaction with an aim of reducing it to a level where the picked mass is predictable, instead of avoiding entanglement by picking from collision or entanglement-free points or regions. Taking this perspective, several contributions are presented that (i) improve the understanding of the phenomenon of entanglement and (ii) reduce the picking error (PE) by effectively countering entanglement in a TP pile.First, it studies the mechanics of a variety of TPs improving the understanding of the phenomenon of entanglement as observed in TP bins. It reports experiments with a real robot in which picking TPs with different protrusion lengths (PLs) results in up to a 76% increase in picked mass variance, suggesting PL be an informative feature in the design of picking strategies. Moreover, to counter the inherent entanglement in a TP pile, it proposes a new Spread-and-Pick (SnP) approach that significantly reduces entanglement, making picking more consistent. Compared to prior approaches that seek to pick from a tangle-free point in the pile, the proposed method results in a decrease in PE of up to 51% and shows good generalisation to previously unseen TPs

    Multi-Stage Cable Routing through Hierarchical Imitation Learning

    Full text link
    We study the problem of learning to perform multi-stage robotic manipulation tasks, with applications to cable routing, where the robot must route a cable through a series of clips. This setting presents challenges representative of complex multi-stage robotic manipulation scenarios: handling deformable objects, closing the loop on visual perception, and handling extended behaviors consisting of multiple steps that must be executed successfully to complete the entire task. In such settings, learning individual primitives for each stage that succeed with a high enough rate to perform a complete temporally extended task is impractical: if each stage must be completed successfully and has a non-negligible probability of failure, the likelihood of successful completion of the entire task becomes negligible. Therefore, successful controllers for such multi-stage tasks must be able to recover from failure and compensate for imperfections in low-level controllers by smartly choosing which controllers to trigger at any given time, retrying, or taking corrective action as needed. To this end, we describe an imitation learning system that uses vision-based policies trained from demonstrations at both the lower (motor control) and the upper (sequencing) level, present a system for instantiating this method to learn the cable routing task, and perform evaluations showing great performance in generalizing to very challenging clip placement variations. Supplementary videos, datasets, and code can be found at https://sites.google.com/view/cablerouting

    Sim2Real Neural Controllers for Physics-based Robotic Deployment of Deformable Linear Objects

    Full text link
    Deformable linear objects (DLOs), such as rods, cables, and ropes, play important roles in daily life. However, manipulation of DLOs is challenging as large geometrically nonlinear deformations may occur during the manipulation process. This problem is made even more difficult as the different deformation modes (e.g., stretching, bending, and twisting) may result in elastic instabilities during manipulation. In this paper, we formulate a physics-guided data-driven method to solve a challenging manipulation task -- accurately deploying a DLO (an elastic rod) onto a rigid substrate along various prescribed patterns. Our framework combines machine learning, scaling analysis, and physical simulations to develop a physics-based neural controller for deployment. We explore the complex interplay between the gravitational and elastic energies of the manipulated DLO and obtain a control method for DLO deployment that is robust against friction and material properties. Out of the numerous geometrical and material properties of the rod and substrate, we show that only three non-dimensional parameters are needed to describe the deployment process with physical analysis. Therefore, the essence of the controlling law for the manipulation task can be constructed with a low-dimensional model, drastically increasing the computation speed. The effectiveness of our optimal control scheme is shown through a comprehensive robotic case study comparing against a heuristic control method for deploying rods for a wide variety of patterns. In addition to this, we also showcase the practicality of our control scheme by having a robot accomplish challenging high-level tasks such as mimicking human handwriting, cable placement, and tying knots.Comment: YouTube video: https://youtu.be/OSD6dhOgyMA?feature=share
    • …
    corecore