42 research outputs found

    Evaluation of Reallocation Heuristics for Moldable Tasks in Computational Dedicated and non Dedicated Grids

    Get PDF
    Grid services often consist of remote sequential or rigid parallel application executions. However, moldable parallel applications, linear algebra solvers for example, are of great interest but requires dynamic tuning which has mostly to be done interactively if performances are needed. Thus, their grid execution depends on a remote and transparent submission to a possibly different batch scheduler on each site, and means an automatic tuning of the job according to the local load. In this report we study the benefits of having a middleware able to automatically submit and reallocate requests from one site to another when it is also able to configure the services by tuning their number of processors and their walltime. In this context, we evaluate the benefits of such mechanisms on four multi-cluster Grid setups, where the platform is either composed of several heterogeneous or homogeneous, dedicated or non dedicated clusters. Different scenarios are explored using simulations of real cluster traces from different origins. Results show that a simple scheduling heuristic is good and often the best. Indeed, it is faster and thus can take more jobs into account while having a small execution time. Moreover, users can expect more jobs finishing sooner and a gain on the average job response time between 10\% and 40\% in most cases if this reallocation mechanism combined to auto-tuning capabilities is implemented in a Grid framework. The implementation and the maintenance of this heuristic coupled to the migration mechanism in a Grid middleware is also simpler because less transfers are involved.L'appel à des services présents sur les grilles de calcul correspondent généralement à l'exécution d'une application séquentielle ou rigide. Cependant, il est possible d'avoir des applications parallèles moldables, telles que des solveurs linéaires, qui sont d'un grand intérêt, mais qui demandent une adaptation dynamique pour obtenir de bonnes performances. Leur exécution nécessite donc d'avoir un accès distant et transparent à différents gestionnaires de ressources, demandant donc une adaptation automatique de l'application en fonction de la charge locale. Dans ce rapport, nous étudions les bénéfices découlant de l'utilisation d'un intergiciel de grille capable de soumettre et de réallouer des requêtes d'un site à l'autre tout en configurant automatiquement les services en choisissant le nombre de processeurs ainsi que la durée d'exécution estimée. Dans ce contexte, nous évaluons les gains apportés par de tels mécanismes sur quatre grilles de calcul différentes où la plate-forme est composée de plusieurs grappes, homogène ou hétérogènes, dédiées ou non. Nous explorons différents scénarios par la simulation de traces de tâches provenant de réelles exécutions. Les résultats montrent que l'utilisation d'une heuristique d'ordonnancement simple est efficace, souvent amplement suffisante, voire la meilleure. En effet, elle est plus rapide à l'exécution et permet de prendre plus de requêtes en compte. Les utilisateurs peuvent espérer une majorité de requêtes terminant plus tôt si elle est utilisée, ainsi qu'une réduction du temps d'attente du résultat d'entre 10\% et 40\% dans la plupart des cas lorsque le mécanisme de réallocation couplé à l'adaptation automatique sont présents dans l'intergiciel. De plus, l'implantation et la maintenance de cette heuristique couplée au mécanisme de migration de tâches dans un intergiciel de grille est aussi plus facile car moins de tranferts sont nécessaires

    Reliable Provisioning of Spot Instances for Compute-intensive Applications

    Full text link
    Cloud computing providers are now offering their unused resources for leasing in the spot market, which has been considered the first step towards a full-fledged market economy for computational resources. Spot instances are virtual machines (VMs) available at lower prices than their standard on-demand counterparts. These VMs will run for as long as the current price is lower than the maximum bid price users are willing to pay per hour. Spot instances have been increasingly used for executing compute-intensive applications. In spite of an apparent economical advantage, due to an intermittent nature of biddable resources, application execution times may be prolonged or they may not finish at all. This paper proposes a resource allocation strategy that addresses the problem of running compute-intensive jobs on a pool of intermittent virtual machines, while also aiming to run applications in a fast and economical way. To mitigate potential unavailability periods, a multifaceted fault-aware resource provisioning policy is proposed. Our solution employs price and runtime estimation mechanisms, as well as three fault tolerance techniques, namely checkpointing, task duplication and migration. We evaluate our strategies using trace-driven simulations, which take as input real price variation traces, as well as an application trace from the Parallel Workload Archive. Our results demonstrate the effectiveness of executing applications on spot instances, respecting QoS constraints, despite occasional failures.Comment: 8 pages, 4 figure

    "Virtual malleability" applied to MPI jobs to improve their execution in a multiprogrammed environment"

    Get PDF
    This work focuses on scheduling of MPI jobs when executing in shared-memory multiprocessors (SMPs). The objective was to obtain the best performance in response time in multiprogrammed multiprocessors systems using batch systems, assuming all the jobs have the same priority. To achieve that purpose, the benefits of supporting malleability on MPI jobs to reduce fragmentation and consequently improve the performance of the system were studied. The contributions made in this work can be summarized as follows:· Virtual malleability: A mechanism where a job is assigned a dynamic processor partition, where the number of processes is greater than the number of processors. The partition size is modified at runtime, according to external requirements such as the load of the system, by varying the multiprogramming level, making the job contend for resources with itself. In addition to this, a mechanism which decides at runtime if applying local or global process queues to an application depending on the load balancing between processes of it. · A job scheduling policy, that takes decisions such as how many processes to start with and the maximum multiprogramming degree based on the type and number of applications running and queued. Moreover, as soon as a job finishes execution and where there are queued jobs, this algorithm analyzes whether it is better to start execution of another job immediately or just wait until there are more resources available. · A new alternative to backfilling strategies for the problema of window execution time expiring. Virtual malleability is applied to the backfilled job, reducing its partition size but without aborting or suspending it as in traditional backfilling. The evaluation of this thesis has been done using a practical approach. All the proposals were implemented, modifying the three scheduling levels: queuing system, processor scheduler and runtime library. The impact of the contributions were studied under several types of workloads, varying machine utilization, communication and, balance degree of the applications, multiprogramming level, and job size. Results showed that it is possible to offer malleability over MPI jobs. An application obtained better performance when contending for the resources with itself than with other applications, especially in workloads with high machine utilization. Load imbalance was taken into account obtaining better performance if applying the right queue type to each application independently.The job scheduling policy proposed exploited virtual malleability by choosing at the beginning of execution some parameters like the number of processes and maximum multiprogramming level. It performed well under bursty workloads with low to medium machine utilizations. However as the load increases, virtual malleability was not enough. That is because, when the machine is heavily loaded, the jobs, once shrunk are not able to expand, so they must be executed all the time with a partition smaller than the job size, thus degrading performance. Thus, at this point the job scheduling policy concentrated just in moldability.Fragmentation was alleviated also by applying backfilling techniques to the job scheduling algorithm. Virtual malleability showed to be an interesting improvement in the window expiring problem. Backfilled jobs even on a smaller partition, can continue execution reducing memory swapping generated by aborts/suspensions In this way the queueing system is prevented from reinserting the backfilled job in the queue and re-executing it in the future.Postprint (published version

    ReSHAPE: A Framework for Dynamic Resizing and Scheduling of Homogeneous Applications in a Parallel Environment

    Get PDF
    Applications in science and engineering often require huge computational resources for solving problems within a reasonable time frame. Parallel supercomputers provide the computational infrastructure for solving such problems. A traditional application scheduler running on a parallel cluster only supports static scheduling where the number of processors allocated to an application remains fixed throughout the lifetime of execution of the job. Due to the unpredictability in job arrival times and varying resource requirements, static scheduling can result in idle system resources thereby decreasing the overall system throughput. In this paper we present a prototype framework called ReSHAPE, which supports dynamic resizing of parallel MPI applications executed on distributed memory platforms. The framework includes a scheduler that supports resizing of applications, an API to enable applications to interact with the scheduler, and a library that makes resizing viable. Applications executed using the ReSHAPE scheduler framework can expand to take advantage of additional free processors or can shrink to accommodate a high priority application, without getting suspended. In our research, we have mainly focused on structured applications that have two-dimensional data arrays distributed across a two-dimensional processor grid. The resize library includes algorithms for processor selection and processor mapping. Experimental results show that the ReSHAPE framework can improve individual job turn-around time and overall system throughput.Comment: 15 pages, 10 figures, 5 tables Submitted to International Conference on Parallel Processing (ICPP'07

    Scheduling Task-parallel Applications in Dynamically Asymmetric Environments

    Full text link
    Shared resource interference is observed by applications as dynamic performance asymmetry. Prior art has developed approaches to reduce the impact of performance asymmetry mainly at the operating system and architectural levels. In this work, we study how application-level scheduling techniques can leverage moldability (i.e. flexibility to work as either single-threaded or multithreaded task) and explicit knowledge on task criticality to handle scenarios in which system performance is not only unknown but also changing over time. Our proposed task scheduler dynamically learns the performance characteristics of the underlying platform and uses this knowledge to devise better schedules aware of dynamic performance asymmetry, hence reducing the impact of interference. Our evaluation shows that both criticality-aware scheduling and parallelism tuning are effective schemes to address interference in both shared and distributed memory applicationsComment: Published in ICPP Workshops '2

    ERASE: Energy Efficient Task Mapping and Resource Management for Work Stealing Runtimes

    Get PDF
    Parallel applications often rely on work stealing schedulers in combination with fine-grained tasking to achieve high performance and scalability. However, reducing the total energy consumption in the context of work stealing runtimes is still challenging, particularly when using asymmetric architectures with different types of CPU cores. A common approach for energy savings involves dynamic voltage and frequency scaling (DVFS) wherein throttling is carried out based on factors like task parallelism, stealing relations, and task criticality. This article makes the following observations: (i) leveraging DVFS on a per-task basis is impractical when using fine-grained tasking and in environments with cluster/chip-level DVFS; (ii) task moldability, wherein a single task can execute on multiple threads/cores via work-sharing, can help to reduce energy consumption; and (iii) mismatch between tasks and assigned resources (i.e., core type and number of cores) can detrimentally impact energy consumption. In this article, we propose EneRgy Aware SchedulEr (ERASE), an intra-application task scheduler on top of work stealing runtimes that aims to reduce the total energy consumption of parallel applications. It achieves energy savings by guiding scheduling decisions based on per-task energy consumption predictions of different resource configurations. In addition, ERASE is capable of adapting to both given static frequency settings and externally controlled DVFS. Overall, ERASE achieves up to 31% energy savings and improves performance by 44% on average, compared to the state-of-the-art DVFS-based schedulers

    Optimisation of LHCb Applications for Multi- and Manycore Job Submission

    Get PDF
    Nowadays, the Worldwide LHC Computing Grid mainly consists of multi- and manycore processors. The thesis investigates how such resources can be used more efficiently at the example of the LHCb experiment. It analyses how to improve software in terms of memory requirements and concurrency. The research involves the implementation of a moldable job scheduler and a supervised learning algorithm which helps to better predict LHCb workloads

    "Virtual malleability" applied to MPI jobs to improve their execution in a multiprogrammed environment"

    Get PDF
    This work focuses on scheduling of MPI jobs when executing in shared-memory multiprocessors (SMPs). The objective was to obtain the best performance in response time in multiprogrammed multiprocessors systems using batch systems, assuming all the jobs have the same priority. To achieve that purpose, the benefits of supporting malleability on MPI jobs to reduce fragmentation and consequently improve the performance of the system were studied. The contributions made in this work can be summarized as follows:· Virtual malleability: A mechanism where a job is assigned a dynamic processor partition, where the number of processes is greater than the number of processors. The partition size is modified at runtime, according to external requirements such as the load of the system, by varying the multiprogramming level, making the job contend for resources with itself. In addition to this, a mechanism which decides at runtime if applying local or global process queues to an application depending on the load balancing between processes of it. · A job scheduling policy, that takes decisions such as how many processes to start with and the maximum multiprogramming degree based on the type and number of applications running and queued. Moreover, as soon as a job finishes execution and where there are queued jobs, this algorithm analyzes whether it is better to start execution of another job immediately or just wait until there are more resources available. · A new alternative to backfilling strategies for the problema of window execution time expiring. Virtual malleability is applied to the backfilled job, reducing its partition size but without aborting or suspending it as in traditional backfilling. The evaluation of this thesis has been done using a practical approach. All the proposals were implemented, modifying the three scheduling levels: queuing system, processor scheduler and runtime library. The impact of the contributions were studied under several types of workloads, varying machine utilization, communication and, balance degree of the applications, multiprogramming level, and job size. Results showed that it is possible to offer malleability over MPI jobs. An application obtained better performance when contending for the resources with itself than with other applications, especially in workloads with high machine utilization. Load imbalance was taken into account obtaining better performance if applying the right queue type to each application independently.The job scheduling policy proposed exploited virtual malleability by choosing at the beginning of execution some parameters like the number of processes and maximum multiprogramming level. It performed well under bursty workloads with low to medium machine utilizations. However as the load increases, virtual malleability was not enough. That is because, when the machine is heavily loaded, the jobs, once shrunk are not able to expand, so they must be executed all the time with a partition smaller than the job size, thus degrading performance. Thus, at this point the job scheduling policy concentrated just in moldability.Fragmentation was alleviated also by applying backfilling techniques to the job scheduling algorithm. Virtual malleability showed to be an interesting improvement in the window expiring problem. Backfilled jobs even on a smaller partition, can continue execution reducing memory swapping generated by aborts/suspensions In this way the queueing system is prevented from reinserting the backfilled job in the queue and re-executing it in the future

    Holistic Slowdown Driven Scheduling and Resource Management for Malleable Jobs

    Get PDF
    In job scheduling, the concept of malleability has been explored since many years ago. Research shows that malleability improves system performance, but its utilization in HPC never became widespread. The causes are the difficulty in developing malleable applications, and the lack of support and integration of the different layers of the HPC software stack. However, in the last years, malleability in job scheduling is becoming more critical because of the increasing complexity of hardware and workloads. In this context, using nodes in an exclusive mode is not always the most efficient solution as in traditional HPC jobs, where applications were highly tuned for static allocations, but offering zero flexibility to dynamic executions. This paper proposes a new holistic, dynamic job scheduling policy, Slowdown Driven (SD-Policy), which exploits the malleability of applications as the key technology to reduce the average slowdown and response time of jobs. SD-Policy is based on backfill and node sharing. It applies malleability to running jobs to make room for jobs that will run with a reduced set of resources, only when the estimated slowdown improves over the static approach. We implemented SD-Policy in SLURM and evaluated it in a real production environment, and with a simulator using workloads of up to 198K jobs. Results show better resource utilization with the reduction of makespan, response time, slowdown, and energy consumption, up to respectively 7%, 50%, 70%, and 6%, for the evaluated workloads

    Provisioning Spot Market Cloud Resources to Create Cost-effective Virtual Clusters

    Full text link
    Infrastructure-as-a-Service providers are offering their unused resources in the form of variable-priced virtual machines (VMs), known as "spot instances", at prices significantly lower than their standard fixed-priced resources. To lease spot instances, users specify a maximum price they are willing to pay per hour and VMs will run only when the current price is lower than the user's bid. This paper proposes a resource allocation policy that addresses the problem of running deadline-constrained compute-intensive jobs on a pool of composed solely of spot instances, while exploiting variations in price and performance to run applications in a fast and economical way. Our policy relies on job runtime estimations to decide what are the best types of VMs to run each job and when jobs should run. Several estimation methods are evaluated and compared, using trace-based simulations, which take real price variation traces obtained from Amazon Web Services as input, as well as an application trace from the Parallel Workload Archive. Results demonstrate the effectiveness of running computational jobs on spot instances, at a fraction (up to 60% lower) of the price that would normally cost on fixed priced resources.Comment: 14 pages, 4 figures, 11th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP-11); Lecture Notes in Computer Science, Vol. 7016, 201
    corecore