12,873 research outputs found

    Dependability Auditing with Model Checking

    Get PDF
    Model checking offers a methodology for determining whether a model satisfies a list of correctness requirements. We propose a theory of dependability auditing with model checking based on four principles: (1) The modeling process should be partitioned into computational components and behavioral components as an aid to system understanding; (2) The complex system will be abstracted to create a model; (3) A language must be available that can represent and evaluate states and processes that evolve over time; (4) Given an adequate model and temporal specifications, a model checker can verify whether or not the input model is a model of that specification: the specification will not fail in the model. We demonstrate this theoretical framework with Web Services and electronic contracting

    Quantitative evaluation of Pandora Temporal Fault Trees via Petri Nets

    Get PDF
    © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. Using classical combinatorial fault trees, analysts are able to assess the effects of combinations of failures on system behaviour but are unable to capture sequence dependent dynamic behaviour. Pandora introduces temporal gates and temporal laws to fault trees to allow sequence-dependent dynamic analysis of events. Pandora can be easily integrated in model-based design and analysis techniques; however, the combinatorial quantification techniques used to solve classical fault trees cannot be applied to temporal fault trees. Temporal fault trees capture state and therefore require a state space solution for quantification of probability. In this paper, we identify Petri Nets as a possible framework for quantifying temporal trees. We describe how Pandora fault trees can be mapped to Petri Nets for dynamic dependability analysis and demonstrate the process on a fault tolerant fuel distribution system model

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Promises, Impositions, and other Directionals

    Get PDF
    Promises, impositions, proposals, predictions, and suggestions are categorized as voluntary co-operational methods. The class of voluntary co-operational methods is included in the class of so-called directionals. Directionals are mechanisms supporting the mutual coordination of autonomous agents. Notations are provided capable of expressing residual fragments of directionals. An extensive example, involving promises about the suitability of programs for tasks imposed on the promisee is presented. The example illustrates the dynamics of promises and more specifically the corresponding mechanism of trust updating and credibility updating. Trust levels and credibility levels then determine the way certain promises and impositions are handled. The ubiquity of promises and impositions is further demonstrated with two extensive examples involving human behaviour: an artificial example about an agent planning a purchase, and a realistic example describing technology mediated interaction concerning the solution of pay station failure related problems arising for an agent intending to leave the parking area.Comment: 55 page

    GODA: A goal-oriented requirements engineering framework for runtime dependability analysis

    Get PDF
    Many modern software systems must deal with changes and uncertainty. Traditional dependability requirements engineering is not equipped for this since it assumes that the context in which a system operates be stable and deterministic, which often leads to failures and recurrent corrective maintenance. The Contextual Goal Model (CGM), a requirements model that proposes the idea of context-dependent goal fulfillment, mitigates the problem by relating alternative strategies for achieving goals to the space of context changes. Additionally, the Runtime Goal Model (RGM) adds behavioral constraints to the fulfillment of goals that may be checked against system execution traces. Objective: This paper proposes GODA (Goal-Oriented Dependability Analysis) and its supporting framework as concrete means for reasoning about the dependability requirements of systems that operate in dynamic contexts. Method: GODA blends the power of CGM, RGM and probabilistic model checking to provide a formal requirements specification and verification solution. At design time, it can help with design and implementation decisions; at runtime it helps the system self-adapt by analyzing the different alternatives and selecting the one with the highest probability for the system to be dependable. GODA is integrated into TAO4ME, a state-of-the-art tool for goal modeling and analysis. Results: GODA has been evaluated against feasibility and scalability on Mobee: a real-life software system that allows people to share live and updated information about public transportation via mobile devices, and on larger goal models. GODA can verify, at runtime, up to two thousand leaf-tasks in less than 35ms, and requires less than 240 KB of memory. Conclusion: Presented results show GODA's design-time and runtime verification capabilities, even under limited computational resources, and the scalability of the proposed solution
    • …
    corecore