2,856 research outputs found

    Observations on Factors Affecting Performance of MapReduce based Apriori on Hadoop Cluster

    Full text link
    Designing fast and scalable algorithm for mining frequent itemsets is always being a most eminent and promising problem of data mining. Apriori is one of the most broadly used and popular algorithm of frequent itemset mining. Designing efficient algorithms on MapReduce framework to process and analyze big datasets is contemporary research nowadays. In this paper, we have focused on the performance of MapReduce based Apriori on homogeneous as well as on heterogeneous Hadoop cluster. We have investigated a number of factors that significantly affects the execution time of MapReduce based Apriori running on homogeneous and heterogeneous Hadoop Cluster. Factors are specific to both algorithmic and non-algorithmic improvements. Considered factors specific to algorithmic improvements are filtered transactions and data structures. Experimental results show that how an appropriate data structure and filtered transactions technique drastically reduce the execution time. The non-algorithmic factors include speculative execution, nodes with poor performance, data locality & distribution of data blocks, and parallelism control with input split size. We have applied strategies against these factors and fine tuned the relevant parameters in our particular application. Experimental results show that if cluster specific parameters are taken care of then there is a significant reduction in execution time. Also we have discussed the issues regarding MapReduce implementation of Apriori which may significantly influence the performance.Comment: 8 pages, 8 figures, International Conference on Computing, Communication and Automation (ICCCA2016

    Testing Interestingness Measures in Practice: A Large-Scale Analysis of Buying Patterns

    Full text link
    Understanding customer buying patterns is of great interest to the retail industry and has shown to benefit a wide variety of goals ranging from managing stocks to implementing loyalty programs. Association rule mining is a common technique for extracting correlations such as "people in the South of France buy ros\'e wine" or "customers who buy pat\'e also buy salted butter and sour bread." Unfortunately, sifting through a high number of buying patterns is not useful in practice, because of the predominance of popular products in the top rules. As a result, a number of "interestingness" measures (over 30) have been proposed to rank rules. However, there is no agreement on which measures are more appropriate for retail data. Moreover, since pattern mining algorithms output thousands of association rules for each product, the ability for an analyst to rely on ranking measures to identify the most interesting ones is crucial. In this paper, we develop CAPA (Comparative Analysis of PAtterns), a framework that provides analysts with the ability to compare the outcome of interestingness measures applied to buying patterns in the retail industry. We report on how we used CAPA to compare 34 measures applied to over 1,800 stores of Intermarch\'e, one of the largest food retailers in France

    Analyze Large Multidimensional Datasets Using Algebraic Topology

    Get PDF
    This paper presents an efficient algorithm to extract knowledge from high-dimensionality, high- complexity datasets using algebraic topology, namely simplicial complexes. Based on concept of isomorphism of relations, our method turn a relational table into a geometric object (a simplicial complex is a polyhedron). So, conceptually association rule searching is turned into a geometric traversal problem. By leveraging on the core concepts behind Simplicial Complex, we use a new technique (in computer science) that improves the performance over existing methods and uses far less memory. It was designed and developed with a strong emphasis on scalability, reliability, and extensibility. This paper also investigate the possibility of Hadoop integration and the challenges that come with the framework
    • …
    corecore