3,613 research outputs found

    The Glass Ceiling and Persons With Disabilities

    Get PDF
    Glass Ceiling ReportGlassCeilingBackground2PersonsWithDisabilities.pdf: 8336 downloads, before Oct. 1, 2020

    Learning differences & digital equity in the classroom

    Get PDF
    This chapter addresses digital equity in the classroom for students with learning differences, as well as the role of technology in the provision of equitable education for the full diversity of students. The chapter discusses the evolving opportunities and challenges that information technology in the classroom presents to students with learning differences and their teachers. To meaningfully understand this topic requires an understanding of the complex context, the forces at play, and their relation to students with learning differences. Among the forces at play are policies, regulations, the accessibility movement, technical trends, instructional design strategies, educational publishing, open educational resources, pedagogical trends, quality control approaches in education, and governance of formal education. The chapter highlights the benefits to all students of designing the classroom experience for students with learning differences

    Will artificial intelligence be a blessing or concern in assistive robots for play?

    Get PDF
    The recent advances and popularity of artificial intelligence (AI) offer exciting possibilities to improve technology but they also raise concerns.  In this paper, we use our research to present the potential benefits of using AI in assistive technology for children with disabilities to access play, and examine potential ethical concerns surrounding data required by AI algorithms. Since play is a key factor in child well-being and cognitive development, secondary disabilities may arise as a consequence of motor impairments. Assistive robots for augmentative manipulation can be instrumental in providing children with physical disabilities play opportunities, but we need to take a principled and user-centered approach to technical innovations.Os avanços recentes e popularidade da Inteligência Artificial (IA) oferecem possibilidades animadoras para melhorar a tecnologia, mas, também, trazem preocupação. Neste artigo, usamos nossa pesquisa para apresentar os benefícios potenciais do uso da IA em tecnologia assistiva para crianças com deficiências brincarem e examinar possíveis preocupações éticas em torno dos dados exigidos pelos algoritmos de IA. Uma vez que o brincar é um fator chave no bem-estar infantil e no desenvolvimento cognitivo, as incapacidades secundárias podem surgir como consequência de deficiências motoras. Robôs assistivos para manipulação aumentativa podem ser fundamentais para proporcionar às crianças com deficiência física oportunidades de brincar, mas precisamos adotar uma abordagem baseada em princípios e centrada no usuário para inovações técnicas

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Recent and upcoming BCI progress: overview, analysis, and recommendations

    Get PDF
    Brain–computer interfaces (BCIs) are finally moving out of the laboratory and beginning to gain acceptance in real-world situations. As BCIs gain attention with broader groups of users, including persons with different disabilities and healthy users, numerous practical questions gain importance. What are the most practical ways to detect and analyze brain activity in field settings? Which devices and applications are most useful for different people? How can we make BCIs more natural and sensitive, and how can BCI technologies improve usability? What are some general trends and issues, such as combining different BCIs or assessing and comparing performance? This book chapter provides an overview of the different sections of this book, providing a summary of how authors address these and other questions. We also present some predictions and recommendations that ensue from our experience from discussing these and other issues with our authors and other researchers and developers within the BCI community. We conclude that, although some directions are hard to predict, the field is definitely growing and changing rapidly, and will continue doing so in the next several years
    • …
    corecore