7,396 research outputs found

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    Cooperation in Industrial Systems

    No full text
    ARCHON is an ongoing ESPRIT II project (P-2256) which is approximately half way through its five year duration. It is concerned with defining and applying techniques from the area of Distributed Artificial Intelligence to the development of real-size industrial applications. Such techniques enable multiple problem solvers (e.g. expert systems, databases and conventional numerical software systems) to communicate and cooperate with each other to improve both their individual problem solving behavior and the behavior of the community as a whole. This paper outlines the niche of ARCHON in the Distributed AI world and provides an overview of the philosophy and architecture of our approach the essence of which is to be both general (applicable to the domain of industrial process control) and powerful enough to handle real-world problems

    A proposal of an architecture for the coordination level of intelligent machines

    Get PDF
    The issue of obtaining a practical, structured, and detailed description of an architecture for the Coordination Level of Center for Intelligent Robotic Systems for Sapce Exploration (CIRSSE) Testbed Intelligent Controller is addressed. Previous theoretical and implementation works were the departure point for the discussion. The document is organized as follows: after this introductory section, section 2 summarizes the overall view of the Intelligent Machine (IM) as a control system, proposing a performance measure on which to base its design. Section 3 addresses with some detail implementation issues. An hierarchic petri-net with feedback-based learning capabilities is proposed. Finally, section 4 is an attempt to address the feedback problem. Feedback is used for two functions: error recovery and reinforcement learning of the correct translations for the petri-net transitions

    NASA/ASEE Summer Faculty Fellowship Program, 1990, Volume 1

    Get PDF
    The 1990 Johnson Space Center (JSC) NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and JSC. A compilation of the final reports on the research projects are presented. The topics covered include: the Space Station; the Space Shuttle; exobiology; cell biology; culture techniques; control systems design; laser induced fluorescence; spacecraft reliability analysis; reduced gravity; biotechnology; microgravity applications; regenerative life support systems; imaging techniques; cardiovascular system; physiological effects; extravehicular mobility units; mathematical models; bioreactors; computerized simulation; microgravity simulation; and dynamic structural analysis

    Filtering as a reasoning-control strategy: An experimental assessment

    Get PDF
    In dynamic environments, optimal deliberation about what actions to perform is impossible. Instead, it is sometimes necessary to trade potential decision quality for decision timeliness. One approach to achieving this trade-off is to endow intelligent agents with meta-level strategies that provide them guidance about when to reason (and what to reason about) and when to act. We describe our investigations of a particular meta-level reasoning strategy, filtering, in which an agent commits to the goals it has already adopted, and then filters from consideration new options that would conflict with the successful completion of existing goals. To investigate the utility of filtering, a series of experiments was conducted using the Tileworld testbed. Previous experiments conducted by Kinny and Georgeff used an earlier version of the Tileworld to demonstrate the feasibility of filtering. Results are presented that replicate and extend those of Kinny and Georgeff and demonstrate some significant environmental influences on the value of filtering

    Aerobic power, huddling and the efficiency of torpor in the South American marsupial, Dromiciops gliroides.

    Get PDF
    During periods of cold, small endotherms depend on a continuous supply of food and energy to maintain euthermic body temperature (T(b)), which can be challenging if food is limited. In these conditions, energy-saving strategies are critical to reduce the energetic requirements for survival. Mammals from temperate regions show a wide arrange of such strategies, including torpor and huddling. Here we provide a quantitative description of thermoregulatory capacities and energy-saving strategies in Dromiciops gliroides, a Microbiotherid marsupial inhabiting temperate rain forests. Unlike many mammals from temperate regions, preliminary studies have suggested that this species has low capacity for control and regulation of body temperature, but there is still an incomplete picture of its bioenergetics. In order to more fully understand the physiological capacities of this "living fossil", we measured its scope of aerobic power and the interaction between huddling and torpor. Specifically, we evaluated: (1) the relation between basal (BMR) and maximum metabolic rate (MMR), and (2) the role of huddling on the characteristics of torpor at different temperatures. We found that BMR and MMR were above the expected values for marsupials and the factorial aerobic scope (from [Formula: see text]CO(2)) was 6.0±0.45 (using [Formula: see text]CO(2)) and 6.2±0.23 (using [Formula: see text]O(2)), an unusually low value for mammals. Also, repeatability of physiological variables was non-significant, as in previous studies, suggesting poor time-consistency of energy metabolism. Comparisons of energy expenditure and body temperature (using attached data-loggers) between grouped and isolated individuals showed that at 20°C both average resting metabolic rate and body temperature were higher in groups, essentially because animals remained non-torpid. At 10°C, however, all individuals became torpid and no differences were observed between grouped and isolated individuals. In summary, our study suggests that the main response of Dromiciops gliroides to low ambient temperature is reduced body temperature and torpor, irrespective of huddling. Low aerobic power and low time-consistency of most thermoregulatory traits of Dromiciops gliroides support the idea of poor thermoregulatory abilities in this species

    Going beyond Computation and Its Limits: Injecting Cognition into Computing

    Get PDF
    corecore