5,960 research outputs found

    Workload-Based Configuration of MEMS-Based Storage Devices for Mobile Systems

    Get PDF
    Because of its small form factor, high capacity, and expected low cost, MEMS-based storage is a suitable storage technology for mobile systems. However, flash memory may outperform MEMS-based storage in terms of performance, and energy-efficiency. The problem is that MEMS-based storage devices have a large number (i.e., thousands) of heads, and to deliver peak performance, all heads must be deployed simultaneously to access each single sector. Since these devices are mechanical and thus some housekeeping information is needed for each head, this results in a huge capacity loss and increases the energy consumption of MEMS-based storage with respect to flash. We solve this problem by proposing new techniques to lay out data in MEMS-based storage devices. Data layouts represent optimizations in a design space spanned by three parameters: the number of active heads, sector parallelism, and sector size. We explore this design space and show that by exploiting knowledge of the expected workload, MEMS-based devices can employ all heads, thus delivering peak performance, while decreasing the energy consumption and compromising only a little on the capacity. Our exploration shows that MEMS-based storage is competitive with flash in most cases, and outperforms flash in a few cases

    A Logical Model and Data Placement Strategies for MEMS Storage Devices

    Full text link
    MEMS storage devices are new non-volatile secondary storages that have outstanding advantages over magnetic disks. MEMS storage devices, however, are much different from magnetic disks in the structure and access characteristics. They have thousands of heads called probe tips and provide the following two major access facilities: (1) flexibility: freely selecting a set of probe tips for accessing data, (2) parallelism: simultaneously reading and writing data with the set of probe tips selected. Due to these characteristics, it is nontrivial to find data placements that fully utilize the capability of MEMS storage devices. In this paper, we propose a simple logical model called the Region-Sector (RS) model that abstracts major characteristics affecting data retrieval performance, such as flexibility and parallelism, from the physical MEMS storage model. We also suggest heuristic data placement strategies based on the RS model and derive new data placements for relational data and two-dimensional spatial data by using those strategies. Experimental results show that the proposed data placements improve the data retrieval performance by up to 4.0 times for relational data and by up to 4.8 times for two-dimensional spatial data of approximately 320 Mbytes compared with those of existing data placements. Further, these improvements are expected to be more marked as the database size grows.Comment: 37 page

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System

    Towards compliant data retention with probe storage on patterned media

    Get PDF
    We describe how the compliance requirements for data retention from recent laws such as the US Sarbanes Oxley Act may be supported by a tamper-evident secure storage system based on probe storage with a patterned magnetic medium. This medium supports normal read/write operations by out-of-plane magnetisation of individual dots. We report on an experiment to show that in principle the medium also supports a separate class of write-once operation that destroys the out-of-plane magnetisation property of the dots irreversibly by precise local heating. The write-once operation can be used to support flexible data retention by tamper-evident writing and physical data deletion

    A novel mechanical analogy based battery model for SoC estimation using a multi-cell EKF

    Full text link
    The future evolution of technological systems dedicated to improve energy efficiency will strongly depend on effective and reliable Energy Storage Systems, as key components for Smart Grids, microgrids and electric mobility. Besides possible improvements in chemical materials and cells design, the Battery Management System is the most important electronic device that improves the reliability of a battery pack. In fact, a precise State of Charge (SoC) estimation allows the energy flows controller to exploit better the full capacity of each cell. In this paper, we propose an alternative definition for the SoC, explaining the rationales by a mechanical analogy. We introduce a novel cell model, conceived as a series of three electric dipoles, together with a procedure for parameters estimation relying only on voltage measures and a given current profile. The three dipoles represent the quasi-stationary, the dynamics and the istantaneous components of voltage measures. An Extended Kalman Filer (EKF) is adopted as a nonlinear state estimator. Moreover, we propose a multi-cell EKF system based on a round-robin approach to allow the same processing block to keep track of many cells at the same time. Performance tests with a prototype battery pack composed by 18 A123 cells connected in series show encouraging results.Comment: 8 page, 12 figures, 1 tabl

    Top-Down Behavioral Modeling Methodology of a Piezoelectric Microgenerator For Integrated Power Harvesting Systems

    Get PDF
    In this study, we developed a top/down methodology for behavioral and structural modeling of multi-domain microsystems. Then, we validated this methodology through a study case : a piezoelectric microgenerator. We also proved the effectiveness of VHDL-AMS language not only for modeling in behavioral and structural levels but also in writing physical models that can predict the experimental results. Finally, we validated these models by presenting and discussing simulations results.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Energy Academic Group Compilation of Abstracts 2012-2016

    Get PDF
    This report highlights the breadth of energy-related student research at NPS and reinforces the importance of energy as an integral aspect of today's Naval enterprise. The abstracts provided are from theses and a capstone project report completed by December 2012-March 2016 graduates.http://archive.org/details/energyacademicgr109454991

    Starting from Scratch: Creating an Information Technology Infrastructure for MEMS-Related Research and Development

    Get PDF
    Micro Electro Mechanical Systems (MEMS) have already revolutionized several industries through miniaturization and cost effective manufacturing capabilities that were never possible before. However, commercially available MEMS products have only scratched the surface of the application areas where MEMS has potential. The complex and highly technical nature of MEMS research and development (R&D) combined with the lack of standards in areas such as design, fabrication and test methodologies, makes creating and supporting a MEMS R&D program a financial and technological challenge. A proper information technology (IT) infrastructure is the backbone of such research and is critical to its success. While the lack of standards and the general complexity in MEMS R&D makes it impossible to provide a “one size fits all” design, a systematic approach, combined with a good understanding of the MEMS R&D environment and the relevant computer-aided design tools, provides a way for the IT architect to develop an appropriate infrastructure
    corecore