2,415 research outputs found

    Metal-Organic Frameworks in Germany: from Synthesis to Function

    Full text link
    Metal-organic frameworks (MOFs) are constructed from a combination of inorganic and organic units to produce materials which display high porosity, among other unique and exciting properties. MOFs have shown promise in many wide-ranging applications, such as catalysis and gas separations. In this review, we highlight MOF research conducted by Germany-based research groups. Specifically, we feature approaches for the synthesis of new MOFs, high-throughput MOF production, advanced characterization methods and examples of advanced functions and properties

    Current-Mode Techniques for the Implementation of Continuous- and Discrete-Time Cellular Neural Networks

    Get PDF
    This paper presents a unified, comprehensive approach to the design of continuous-time (CT) and discrete-time (DT) cellular neural networks (CNN) using CMOS current-mode analog techniques. The net input signals are currents instead of voltages as presented in previous approaches, thus avoiding the need for current-to-voltage dedicated interfaces in image processing tasks with photosensor devices. Outputs may be either currents or voltages. Cell design relies on exploitation of current mirror properties for the efficient implementation of both linear and nonlinear analog operators. These cells are simpler and easier to design than those found in previously reported CT and DT-CNN devices. Basic design issues are covered, together with discussions on the influence of nonidealities and advanced circuit design issues as well as design for manufacturability considerations associated with statistical analysis. Three prototypes have been designed for l.6-pm n-well CMOS technologies. One is discrete-time and can be reconfigured via local logic for noise removal, feature extraction (borders and edges), shadow detection, hole filling, and connected component detection (CCD) on a rectangular grid with unity neighborhood radius. The other two prototypes are continuous-time and fixed template: one for CCD and other for noise removal. Experimental results are given illustrating performance of these prototypes

    Computing and communications for the software-defined metamaterial paradigm: a context analysis

    Get PDF
    Metamaterials are artificial structures that have recently enabled the realization of novel electromagnetic components with engineered and even unnatural functionalities. Existing metamaterials are specifically designed for a single application working under preset conditions (e.g., electromagnetic cloaking for a fixed angle of incidence) and cannot be reused. Software-defined metamaterials (SDMs) are a much sought-after paradigm shift, exhibiting electromagnetic properties that can be reconfigured at runtime using a set of software primitives. To enable this new technology, SDMs require the integration of a network of controllers within the structure of the metamaterial, where each controller interacts locally and communicates globally to obtain the programmed behavior. The design approach for such controllers and the interconnection network, however, remains unclear due to the unique combination of constraints and requirements of the scenario. To bridge this gap, this paper aims to provide a context analysis from the computation and communication perspectives. Then, analogies are drawn between the SDM scenario and other applications both at the micro and nano scales, identifying possible candidates for the implementation of the controllers and the intra-SDM network. Finally, the main challenges of SDMs related to computing and communications are outlined.Peer ReviewedPostprint (published version
    corecore