11,283 research outputs found

    Strict General Setting for Building Decision Procedures into Theorem Provers

    Get PDF
    The efficient and flexible incorporating of decision procedures into theorem provers is very important for their successful use. There are several approaches for combining and augmenting of decision procedures; some of them support handling uninterpreted functions, congruence closure, lemma invoking etc. In this paper we present a variant of one general setting for building decision procedures into theorem provers (gs framework [18]). That setting is based on macro inference rules motivated by techniques used in different approaches. The general setting enables a simple describing of different combination/augmentation schemes. In this paper, we further develop and extend this setting by an imposed ordering on the macro inference rules. That ordering leads to a ”strict setting”. It makes implementing and using variants of well-known or new schemes within this framework a very easy task even for a non-expert user. Also, this setting enables easy comparison of different combination/augmentation schemes and combination of their ideas

    Instantiation of SMT problems modulo Integers

    Full text link
    Many decision procedures for SMT problems rely more or less implicitly on an instantiation of the axioms of the theories under consideration, and differ by making use of the additional properties of each theory, in order to increase efficiency. We present a new technique for devising complete instantiation schemes on SMT problems over a combination of linear arithmetic with another theory T. The method consists in first instantiating the arithmetic part of the formula, and then getting rid of the remaining variables in the problem by using an instantiation strategy which is complete for T. We provide examples evidencing that not only is this technique generic (in the sense that it applies to a wide range of theories) but it is also efficient, even compared to state-of-the-art instantiation schemes for specific theories.Comment: Research report, long version of our AISC 2010 pape

    Refined curve counting on complex surfaces

    Full text link
    We define refined invariants which "count" nodal curves in sufficiently ample linear systems on surfaces, conjecture that their generating function is multiplicative, and conjecture explicit formulas in the case of K3 and abelian surfaces. We also give a refinement of the Caporaso-Harris recursion, and conjecture that it produces the same invariants in the sufficiently ample setting. The refined recursion specializes at y = -1 to the Itenberg-Kharlamov-Shustin recursion for Welschinger invariants. We find similar interactions between refined invariants of individual curves and real invariants of their versal families.Comment: 53 pages, 1 figure. (v2 updated to match published version.

    A class of high-order Runge-Kutta-Chebyshev stability polynomials

    Get PDF
    The analytic form of a new class of factorized Runge-Kutta-Chebyshev (FRKC) stability polynomials of arbitrary order NN is presented. Roots of FRKC stability polynomials of degree L=MNL=MN are used to construct explicit schemes comprising LL forward Euler stages with internal stability ensured through a sequencing algorithm which limits the internal amplification factors to L2\sim L^2. The associated stability domain scales as M2M^2 along the real axis. Marginally stable real-valued points on the interior of the stability domain are removed via a prescribed damping procedure. By construction, FRKC schemes meet all linear order conditions; for nonlinear problems at orders above 2, complex splitting or Butcher series composition methods are required. Linear order conditions of the FRKC stability polynomials are verified at orders 2, 4, and 6 in numerical experiments. Comparative studies with existing methods show the second-order unsplit FRKC2 scheme and higher order (4 and 6) split FRKCs schemes are efficient for large moderately stiff problems.Comment: 24 pages, 5 figures. Accepted for publication in Journal of Computational Physics, 22 Jul 2015. Revise
    corecore