180 research outputs found

    Using Lidar-Derived Vegetation Profiles to Predict Time since Fire in an Oak Scrub Landscape in East-Central Florida

    Get PDF
    Disturbance plays a fundamental role in determining the vertical structure of vegetation in many terrestrial ecosystems, and knowledge of disturbance histories is vital for developing effective management and restoration plans. In this study, we investigated the potential of using vertical vegetation profiles derived from discrete-return lidar to predict time since fire (TSF) in a landscape of oak scrub in east-central Florida. We predicted that fire influences vegetation structure at the mesoscale (i.e., spatial scales of tens of meters to kilometers). To evaluate this prediction, we binned lidar returns into 1m vertical by 5 x 5 m horizontal cells and averaged the resulting profiles over a range of horizontal window sizes (0 to 500 m on a side). We then performed a series of resampling tests to compare the performance of support vector machine (SVM), k-nearest neighbor (k-NN), logistic regression, and linear discriminant analysis (LDA) classifiers and to estimate the amount of training data necessary to achieve satisfactory performance. Our results indicate that: (1) the SVMs perform significantly better than the other classifiers, (2) SVM classifiers may require relatively small training data sets, and (3) the highest classification accuracies occur with averaging over windows representing sizes in the mesoscale range

    Characterizing The Vertical Structure And Structural Diversity Of Florida Oak Scrub Vegetation Using Discrete-return Lidar

    Get PDF
    Vertical structure, the top-to-bottom arrangement of aboveground vegetation, is an important component of forest and shrubland ecosystems. For many decades, ecologists have used foliage height profiles and other measures of vertical structure to identify discrete stages in post-disturbance succession and to quantify the heterogeneity of vegetation. Such studies have, however, required resource-intensive field surveys and have been limited to relatively small spatial extents (e.g.

    Ecological Impacts of the Space Shuttle Program at John F. Kennedy Space Center, Florida

    Get PDF
    The Space Shuttle Program was one of NASAs first major undertakings to fall under the environmental impact analysis and documentation requirements of the National Environmental Policy Act of 1969 (NEPA). Space Shuttle Program activities at John F. Kennedy Space Center (KSC) and the associated Merritt Island National Wildlife Refuge (MINWR) contributed directly and indirectly to both negative and positive ecological trends in the region through the long-term, stable expenditure of resources over the 40 year program life cycle. These expenditures provided support to regional growth and development in conjunction with other sources that altered land use patterns, eliminated and modified habitats, and contributed to cultural eutrophication of the Indian River Lagoon. At KSC, most Space Shuttle Program related actions were conducted in previously developed facilities and industrial areas with the exception of the construction of the shuttle landing facility (SLF) and the space station processing facility (SSPF). Launch and operations impacts were minimal as a result of the low annual launch rate. The majority of concerns identified during the NEPA process such as potential weather modification, acid rain off site, and local climate change did not occur. Launch impacts from deposition of HCl and particulates were assimilated as a result of the high buffering capacity of the system and low launch and loading rates. Metals deposition from exhaust deposition did not display acute impacts. Sub-lethal effects are being investigated as part of the Resource Conservation and Recovery Act (RCRA) regulatory process. Major positive Space Shuttle Program effects were derived from the adequate resources available at the Center to implement the numerous environmental laws and regulations designed to enhance the quality of the environment and minimize impacts from human activities. This included reduced discharges of domestic and industrial wastewater, creation of stormwater management systems, remediation of past contamination sites, implementation of hazardous waste management systems, and creation of a culture of sustainability. Working with partners such as the USFWS and the St Johns River Water Management District (SJRWMD), wetlands and scrub restoration and management initiatives were implemented to enhance fish and wildlife populations at the Center. KSC remains the single largest preserve on the east coast of Florida in part due to NASAs commitment to stewardship. Ongoing Ecological Program projects are directed at development of information and knowledge to address future KSC management questions including the transition to a joint government and commercial launch facility, enhanced habitat management requirements for wetlands and scrub, potential impacts of emerging contaminants, and adaptation to climate change including projected sea level rise over the next 50-75 years

    Evaluation of the three-dimensional patterns and ecological impacts of the invasive Old World climbing fern (Lygodium microphyllum)

    Get PDF
    Invasion by non-native species has had significant ecological and economic impacts on a global scale. In the state of Florida, Old World climbing fern (Lygodium microphyllum) is an invasive plant listed by FLEPPC as a category one invader with significant ecological impacts that threaten native plant diversity. This species relies on existing vegetative structures for support to climb into the forest canopy and forms dense mats that cover tree crowns. This subsequently affects the resources available to other species present. Quantifying the structural changes due to the presence of this species has proved logistically difficult, especially on a large spatial scale. Airborne LiDAR (Light Detection And Ranging) technology is a form of remote sensing that measures the elevation of surfaces over a site. In this study I utilized LiDAR to calculate various forest structure metrics at Jonathan Dickinson State Park (JDSP) in Hobe Sound, Florida across various management frequencies and densities of Old World climbing fern. These data were used to quantify the degree to which this invasive species alters forest structure across these two gradients. I also recorded species composition in the field to relate how Old World climbing fern impacts native plant diversity. Structural measurements including average canopy height, height of median energy (HOME), rugosity, canopy openness, and vertical structural diversity (LHDI) were calculated for a total of three hundred 0.25ha sites stratified by invasion density and management frequency. Using a combination of univariate and multivariate statistical analyses I found that the presence of Old World Climbing fern altered the physical structure of the forest communities it invades. Higher percent cover of Old World climbing fern decreased structural diversity while increased management effort was found to mitigate those impacts. The management for Old World Climbing fern was also found to impact both species richness and diversity at JDSP. I also demonstrated that there were several species that were not found and others that were more common in the presence of Old World climbing fern and that there was a relationship between management and what species were present. The results show that both Old World climbing fern and the management practices used to control it have had significant ecological impacts on the natural communities in South Florida

    Remote Sensing of Savannas and Woodlands

    Get PDF
    Savannas and woodlands are one of the most challenging targets for remote sensing. This book provides a current snapshot of the geographical focus and application of the latest sensors and sensor combinations in savannas and woodlands. It includes feature articles on terrestrial laser scanning and on the application of remote sensing to characterization of vegetation dynamics in the Mato Grosso, Cerrado and Caatinga of Brazil. It also contains studies focussed on savannas in Europe, North America, Africa and Australia. It should be important reading for environmental practitioners and scientists globally who are concerned with the sustainability of the global savanna and woodland biome

    VIRTUALIZATION OF FUELBEDS: BUILDING THE NEXT GENERATION OF FUELS DATA FOR MULTIPLE –SCALE FIRE MODELING AND ECOLOGICAL ANALYSIS

    Get PDF
    The primary goal of this research is to advance methods for deriving fine-grained, scalable, wildland fuels attributes in 3-dimensions using terrestrial and airborne laser scanning technology. It is fundamentally a remote sensing research endeavor applied to the problem of fuels characterization. Advancements in laser scanning are beginning to have significant impacts on a range of modeling frameworks in fire research, especially those utilizing 3-dimensional data and benefiting from efficient data scaling. The pairing of laser scanning and fire modeling is enabling advances in understanding how fuels variability modulates fire behavior and effects. This dissertation details the development of methods and techniques to characterize and quantify surface fuelbeds using both terrestrial and airborne laser scanning. The primary study site is Eglin Airforce Base, Florida, USA, which provides a range of fuel types and conditions in a fire-adapted landscape along with the multi-disciplinary expertise, logistical support, and prescribed fire necessary for detailed characterization of fire as a physical process. Chapter 1 provides a research overview and discusses the state of fuels science and the related needs for highly resolved fuels data in the southeastern United States. Chapter 2, describes the use of terrestrial laser scanning for sampling fuels at multiple scales and provides analysis of the spatial accuracy of fuelbed models in 3-D. Chapter 3 describes the development of a voxel-based occupied volume method for predicting fuel mass. Results are used to inform prediction of landscape-scale fuel load using airborne laser scanning metrics as well as to predict post-fire fuel consumption. Chapter 4 introduces a novel fuel simulation approach which produces spatially explicit, statistically-defensible estimates of fuel properties and demonstrates a pathway for resampling observed data. This method also can be directly compared to terrestrial laser scanning data to assess how energy interception of the laser pulse affects characterization of the fuelbed. Chapter 5 discusses the contribution of this work to fire science and describes ongoing and future research derived from this work. Chapters 2 and 4 have been published in International Journal of Wildland Fire and Canadian Journal of Remote Sensing, respectively, and Chapter 3 is in preparation for publication

    Coastal Habitat Integrated Mapping and Monitoring Program report for the State of Florida

    Get PDF
    Mangrove swamps and salt marshes provide valuable ecological services to coastal ecosystems in Florida. Coastal wetlands are an important nursery for many ecologically and commercially important fish and invertebrates. The vegetation stabilizes shorelines, protecting the coast from wave energy, storm surge, and erosion. Coastal wetlands are also able to filter surface water runoff, removing excess nutrients and many pollutants. Peat deposits sequester large amounts of carbon, making coastal wetlands a key sink in global carbon cycles. Mangroves and salt marshes, however, are vulnerable to both direct and indirect threats from human development. Current threats include continued habitat loss, hydrologic alteration of surface and groundwater, sea-level rise, and invasive vegetation. ... Coastal wetland monitoring programs are often short-lived and vary widely in methodology. Monitoring most commonly occurs on protected public lands or at wetland mitigation or restoration sites. These monitoring projects are rarely long-term due to a lack of funding; restoration sites are generally monitored for only a few years. Although long-term funding is difficult to secure, monitoring over long time scales is increasingly important due to regional uncertainties as to how coastal wetland vegetation and substrate accretion will respond to sea-level rise, altered freshwater hydrology, and other disturbances. While periodic land cover mapping programs can capture large-scale changes in habitat extent, smaller-scale species shifts among mangrove and salt marsh vegetation are best captured by on-the-ground monitoring. The chapters in this report summarize recent mapping and monitoring programs in each region of Florida. Content of each chapter includes a general introduction to the region, location-specific threats to salt marshes and mangroves, a summary of selected mapping and monitoring programs, and recommendations for protection, management, and monitoring. Land cover maps in this report generally use data from the most recent water management district land use/land cover (LULC) maps

    Using Spatial Analysis to Evaluate Fire Activity in a Pine Rockland Ecosystem, Big Pine Key, Florida, USA

    Get PDF
    Pine rocklands are fire-prone ecosystems with limited spatial extent, and have experienced reduced area in the previous decades through habitat conversion and urbanization. The purpose of this dissertation research was to evaluate the historical range of variability of fire activity and spatial patterns of fires in a pine rockland ecosystem in the National Key Deer Refuge (NKDR) on Big Pine Key in the Lower Florida Keys. To investigate the temporal and spatial patterns in fire activity, I (1) evaluated the temporal patterns for fires in my study area in the NKDR, (2) analyzed differences in standard fire history metrics since the advent of land management in the 1950s, (3) mapped the spatial extents of fires that scarred \u3e 25% of the recording trees, (4) investigated how regression relationships fire activity and microtopographic parameters changed with aggregated scale, and (5) calculated global and local indications of spatial autocorrelation in the geographic fire-scar data. The 2011 fire was no more severe than other historic fires in the dataset, and was within a range of expectations for severe fires in the area. The relationships between fire activity and microtopography peaked at approximately 50 m (residual topography p \u3c 0.05; curvature p \u3c 0.10). Finally, spatial autocorrelation analyses found statistically significant (p \u3c 0.01) clustering in the fire-scar data network across the study area, and significant low-clustering (p \u3c 0.05) at the at smaller scales. Recent lack of fire return intervals consistent with pre-management periods confirms the influence that people have had on fire in this ecosystem, and the presence of the neighborhood adjacent to the study area in the south may have dampened fire activity in that area

    Assessment of natural resource conditions in and adjacent to Biscayne National Park. Natural Resource Report NPS/BISC/NRR—2012/598

    Get PDF
    This report is an assessment of the conditions of natural resources in Biscayne National Park (BNP) based on the compilation, review and evaluation of existing information on the Park’s natural resources. This review evaluates threats and stressors, and is intended to improve understanding of BNP resources to help guide Park management to address the identified threats, which are supported by enhanced data collection, research and assessment efforts. The report is focused on broad resource components, namely terrestrial resources and aquatic systems including: wetlands, canals, bay waters, marine/reef areas and ground waters. Biotic and abiotic resource components are considered in the review
    • …
    corecore